Infinite Order Differential Operators Associated with Superoscillations in the Half-Plane Barrier

Pub Date : 2024-06-06 DOI:10.1007/s11785-024-01549-7
Peter Schlosser
{"title":"Infinite Order Differential Operators Associated with Superoscillations in the Half-Plane Barrier","authors":"Peter Schlosser","doi":"10.1007/s11785-024-01549-7","DOIUrl":null,"url":null,"abstract":"<p>Superoscillations are a phenomenon in physics, where linear combinations of low-frequency plane waves interfere almost destructively in such a way that the resulting wave has a higher frequency than any of the individual waves. The evolution of superoscillatory initial datum under the time dependent Schrödinger equation is stable in free space, but in general it is unclear whether it can be preserved in the presence of an external potential. In this paper, we consider the two-dimensional problem of superoscillations interacting with a half-plane barrier, where homogeneous Dirichlet or Neumann boundary conditions are imposed on the negative <span>\\(x_2\\)</span>-semiaxis. We use the Fresnel integral technique to write the wave function as an absolute convergent Green’s function integral. Moreover, we introduce the propagator of the Schrödinger equation in form of an infinite order differential operator, acting continuously on the function space of exponentially bounded entire functions. In particular, this operator allows to prove that the property of superoscillations is preserved in the form of a similar phenomenon called supershift, which is stable over time.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01549-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Superoscillations are a phenomenon in physics, where linear combinations of low-frequency plane waves interfere almost destructively in such a way that the resulting wave has a higher frequency than any of the individual waves. The evolution of superoscillatory initial datum under the time dependent Schrödinger equation is stable in free space, but in general it is unclear whether it can be preserved in the presence of an external potential. In this paper, we consider the two-dimensional problem of superoscillations interacting with a half-plane barrier, where homogeneous Dirichlet or Neumann boundary conditions are imposed on the negative \(x_2\)-semiaxis. We use the Fresnel integral technique to write the wave function as an absolute convergent Green’s function integral. Moreover, we introduce the propagator of the Schrödinger equation in form of an infinite order differential operator, acting continuously on the function space of exponentially bounded entire functions. In particular, this operator allows to prove that the property of superoscillations is preserved in the form of a similar phenomenon called supershift, which is stable over time.

Abstract Image

分享
查看原文
半平面屏障中与超振荡相关的无穷阶微分算子
超振荡是物理学中的一种现象,在这种现象中,低频平面波的线性组合几乎以破坏性的方式发生干涉,由此产生的波的频率高于任何一个单独的波。在与时间相关的薛定谔方程下,超振荡初始数据的演化在自由空间中是稳定的,但在一般情况下,还不清楚它是否能在外部势的存在下保持不变。在本文中,我们考虑了超振荡与半平面势垒相互作用的二维问题,其中在负(x_2\)-semiaxis 上施加了同质 Dirichlet 或 Neumann 边界条件。我们使用菲涅尔积分技术将波函数写成绝对收敛的格林函数积分。此外,我们还以无穷阶微分算子的形式引入了薛定谔方程的传播者,它连续作用于指数有界全函数的函数空间。特别是,通过这个算子,我们可以证明超振荡的特性以一种类似的现象形式保留下来,这种现象被称为超平移,它在时间上是稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信