Rawnsley’s $$\varepsilon $$ -Function on a Class of Bounded Hartogs Domains and its Applications

Pub Date : 2024-06-21 DOI:10.1007/s11785-024-01562-w
Shuo Zhang
{"title":"Rawnsley’s $$\\varepsilon $$ -Function on a Class of Bounded Hartogs Domains and its Applications","authors":"Shuo Zhang","doi":"10.1007/s11785-024-01562-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, by using the hypergeometric functions, we obtain the formula for the Rawnsley’s <span>\\(\\varepsilon \\)</span>-function of the Kähler manifold <span>\\((H^n_{\\{k_i\\},\\gamma },g_{\\mu ,\\nu })\\)</span> with <span>\\(\\mu \\in ({\\mathbb {R}}^+)^l\\)</span> and <span>\\(\\nu \\in ({\\mathbb {R}}^+)^{n-k}\\)</span>, where <span>\\(H^n_{\\{k_i\\},\\gamma }\\)</span> is a class of bounded Hartogs domains defined by </p><span>$$\\begin{aligned} H^n_{\\{k_i\\},\\gamma }:=\\big \\{z\\in {\\mathbb {C}}^n:\\max _{1\\le i\\le l}\\Vert {\\widetilde{z}}_i\\Vert&lt;|z_{k+1}|^\\gamma&lt;\\ldots&lt;|z_n|^\\gamma &lt;1\\big \\} \\end{aligned}$$</span><p>and <span>\\(g_{\\mu ,\\nu }\\)</span> is a Kähler metric associated with the Kähler potential <span>\\(-\\sum _{i=1}^l\\mu _i\\ln (|z_{k+1}|^{2\\gamma }-\\Vert {\\widetilde{z}}_i\\Vert ^2)-\\sum _{j=k+1}^n\\nu _j\\ln (|z_{j+1}|^2-|z_j|^2)\\)</span>. As applications of the main result, we obtain the existence of balanced metrics on <span>\\(H^n_{\\{k_i\\},\\gamma }\\)</span> and prove that <span>\\(H^n_{\\{k_i\\},\\gamma }\\)</span> admits a Berezin quantization.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01562-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, by using the hypergeometric functions, we obtain the formula for the Rawnsley’s \(\varepsilon \)-function of the Kähler manifold \((H^n_{\{k_i\},\gamma },g_{\mu ,\nu })\) with \(\mu \in ({\mathbb {R}}^+)^l\) and \(\nu \in ({\mathbb {R}}^+)^{n-k}\), where \(H^n_{\{k_i\},\gamma }\) is a class of bounded Hartogs domains defined by

$$\begin{aligned} H^n_{\{k_i\},\gamma }:=\big \{z\in {\mathbb {C}}^n:\max _{1\le i\le l}\Vert {\widetilde{z}}_i\Vert<|z_{k+1}|^\gamma<\ldots<|z_n|^\gamma <1\big \} \end{aligned}$$

and \(g_{\mu ,\nu }\) is a Kähler metric associated with the Kähler potential \(-\sum _{i=1}^l\mu _i\ln (|z_{k+1}|^{2\gamma }-\Vert {\widetilde{z}}_i\Vert ^2)-\sum _{j=k+1}^n\nu _j\ln (|z_{j+1}|^2-|z_j|^2)\). As applications of the main result, we obtain the existence of balanced metrics on \(H^n_{\{k_i\},\gamma }\) and prove that \(H^n_{\{k_i\},\gamma }\) admits a Berezin quantization.

分享
查看原文
Rawnsley's $$varepsilon $$ -Function on a Class of Bounded Hartogs Domains 及其应用
在本文中,通过使用超几何函数,我们得到了 Kähler 流形 \((H^n_{\{k_i\},\gamma },g_{\mu ...) 的 Rawnsley 的 \(\varepsilon \)-函数公式、\({/mathbb{R}}^+)^l\)和 ({/mathbb{R}}^+)^{n-k}\),其中 (H^n_{k_i\}、\是一类有界哈托格域,定义为: $$begin{aligned} H^n_{{k_i\},\gamma }:=\big \{z\in {\mathbb {C}}^n:\max _{1\le i\le l}\Vert {\widetilde{z}}_i\Vert<|z_{k+1}|^\gamma<\ldots<|z_n|^\gamma <1\big \}\end{aligned}$$和 (g_{\mu 、\nu }\) 是与凯勒势 \(-\sum _{i=1}^l\mu _i\ln (|z_{k+1}|^{2\gamma }-\Vert {\widetilde{z}}_i\Vert ^2)-\sum _{j=k+1}^n\nu _j\ln (|z_{j+1}|^2-|z_j|^2)\) 相关的凯勒度量。作为主要结果的应用,我们得到了 \(H^n_{\{k_i\},\gamma }\) 上平衡度量的存在,并证明 \(H^n_{\{k_i\},\gamma }\) 允许贝雷津量子化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信