{"title":"Important roles of Ruminococcaceae in the human intestine for resistant starch utilization","authors":"Ye-Jin Kim, Dong-Hyun Jung, Cheon-Seok Park","doi":"10.1007/s10068-024-01621-0","DOIUrl":null,"url":null,"abstract":"<div><p>Intricate ecosystem of the human gut microbiome is affected by various environmental factors, genetic makeup of the individual, and diet. Specifically, resistant starch (RS) is indigestible in the small intestine but nourishes the gut microbiota in the colon. Degradation of RS in the gut begins with primary degraders, such as <i>Bifidobacterium adolescentis</i> and <i>Ruminococcus bromii</i>. Recently, new RS degraders, such as <i>Ruminococcoides bili</i>, have been reported. These microorganisms play crucial roles in the transformation of RS into short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate. SCFAs are necessary to maintain optimal intestinal health, regulate inflammation, and protect against various illnesses. This review discusses the effects of RS on gut and highlights its complex interactions with gut flora, especially the <i>Ruminococcaceae</i> family.</p></div>","PeriodicalId":566,"journal":{"name":"Food Science and Biotechnology","volume":"33 and postbiotics","pages":"2009 - 2019"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s10068-024-01621-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intricate ecosystem of the human gut microbiome is affected by various environmental factors, genetic makeup of the individual, and diet. Specifically, resistant starch (RS) is indigestible in the small intestine but nourishes the gut microbiota in the colon. Degradation of RS in the gut begins with primary degraders, such as Bifidobacterium adolescentis and Ruminococcus bromii. Recently, new RS degraders, such as Ruminococcoides bili, have been reported. These microorganisms play crucial roles in the transformation of RS into short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate. SCFAs are necessary to maintain optimal intestinal health, regulate inflammation, and protect against various illnesses. This review discusses the effects of RS on gut and highlights its complex interactions with gut flora, especially the Ruminococcaceae family.
期刊介绍:
The FSB journal covers food chemistry and analysis for compositional and physiological activity changes, food hygiene and toxicology, food microbiology and biotechnology, and food engineering involved in during and after food processing through physical, chemical, and biological ways. Consumer perception and sensory evaluation on processed foods are accepted only when they are relevant to the laboratory research work. As a general rule, manuscripts dealing with analysis and efficacy of extracts from natural resources prior to the processing or without any related food processing may not be considered within the scope of the journal. The FSB journal does not deal with only local interest and a lack of significant scientific merit. The main scope of our journal is seeking for human health and wellness through constructive works and new findings in food science and biotechnology field.