On the Asymptotic Behavior of Solutions of Third-Order Binomial Differential Equations

Pub Date : 2024-06-05 DOI:10.1134/s0012266124020095
Ya. T. Sultanaev, N. F. Valeev, E. A. Nazirova
{"title":"On the Asymptotic Behavior of Solutions of Third-Order Binomial Differential Equations","authors":"Ya. T. Sultanaev, N. F. Valeev, E. A. Nazirova","doi":"10.1134/s0012266124020095","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> The paper discusses the development of a method for constructing asymptotic formulas as\n<span>\\(x\\to \\infty \\)</span> for the fundamental solution system of two-term\nsingular symmetric differential equations of odd order with coefficients in a broad class of\nfunctions that allow oscillation (with relaxed regularity conditions that do not satisfy the classical\nTitchmarsh–Levitan regularity conditions). Using the example of a third-order binomial equation\n<span>\\(({i}/{2})\\bigl [(p(x)y^{\\prime })^{\\prime \\prime }+(p(x)y^{\\prime \\prime })^{\\prime }\\bigr ] +q(x)y =\\lambda y\\)</span>, the asymptotics of solutions in\nthe case of various behavior of the coefficients <span>\\(q(x)\\)</span> and\n<span>\\(h(x)=-1+{1}\\big /{\\sqrt {p(x)}}\\)</span> is studied. New asymptotic\nformulas are obtained for the case in which <span>\\(h(x) \\notin L_1[1,\\infty ) \\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0012266124020095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper discusses the development of a method for constructing asymptotic formulas as \(x\to \infty \) for the fundamental solution system of two-term singular symmetric differential equations of odd order with coefficients in a broad class of functions that allow oscillation (with relaxed regularity conditions that do not satisfy the classical Titchmarsh–Levitan regularity conditions). Using the example of a third-order binomial equation \(({i}/{2})\bigl [(p(x)y^{\prime })^{\prime \prime }+(p(x)y^{\prime \prime })^{\prime }\bigr ] +q(x)y =\lambda y\), the asymptotics of solutions in the case of various behavior of the coefficients \(q(x)\) and \(h(x)=-1+{1}\big /{\sqrt {p(x)}}\) is studied. New asymptotic formulas are obtained for the case in which \(h(x) \notin L_1[1,\infty ) \).

分享
查看原文
论三阶二项式微分方程解的渐近行为
Abstract The paper discusses the development of a method for constructing asymptotic formulas as\(x\to \infty \) for the fundamental solution system of two-termsingular symmetric differential equation of odd order with coefficients in a wide class offunctions that allow oscillation (with relaxed regularity conditions that not satisfy the classicalTitchmarsh-Levitan regularity conditions).以三阶二项式方程为例(({i}/{2})\bigl [(p(x)y^{\prime })^{\prime }+(p(x)y^{\prime })^{\prime }\bigr ] +q(x)y =\lambda y\ )、和(h(x)=-1+{1}\big /\sqrt {p(x)}\)的各种行为情况下的解的渐近性进行了研究。对于 \(h(x) \notin L_1[1,\infty ) 的情况,得到了新的渐近公式。\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信