SiCong Liu, Lei Li, ChanYuan Jiang, QianYu Wang, ZhongShan Deng
{"title":"Synergistic injection of the thermosensitive hydrogel and Bi-based alloy bone cement for orthopaedic repair","authors":"SiCong Liu, Lei Li, ChanYuan Jiang, QianYu Wang, ZhongShan Deng","doi":"10.1007/s11431-023-2609-6","DOIUrl":null,"url":null,"abstract":"<p>Low-melting-point alloys have the advantages of good biocompatibility, plasticity, and near-bone mechanical strength, making them suitable as bone defect-filling materials for direct injection into defective bone sites. However, using low-melting-point alloys for orthopedic implants poses the challenge of causing thermal damage to the surrounding bone tissue during injection. In this study, a thermosensitive hydrogel is prepared and synergistically injected into the bone defect site with BiInSn. BiInSn solidifies and releases heat during injection, while the thermosensitive hydrogel absorbs heat and transforms into a gel state, encapsulating BiInSn. Therefore, the surrounding bone tissue is effectively protected from thermal damage. When BiInSn and the thermosensitive hydrogel were injected synergistically, <i>in vitro</i> thermal experiments revealed that the maximum temperature of the surrounding bone tissue reached 42°C. This temperature is below the 47°C threshold, which causes permanent damage to bone tissues. <i>In vivo</i> experiments demonstrated that rats in the BiInSn-thermosensitive hydrogel group exhibited better recovery at the bone defect sites. These results suggest that the synergistic injection of Bi-based alloy and thermosensitive hydrogel is beneficial in reducing thermal damage to bone tissue, guiding bone tissue growth, and effectively facilitating the repair of bone defects.</p>","PeriodicalId":21612,"journal":{"name":"Science China Technological Sciences","volume":"11 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Technological Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11431-023-2609-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Low-melting-point alloys have the advantages of good biocompatibility, plasticity, and near-bone mechanical strength, making them suitable as bone defect-filling materials for direct injection into defective bone sites. However, using low-melting-point alloys for orthopedic implants poses the challenge of causing thermal damage to the surrounding bone tissue during injection. In this study, a thermosensitive hydrogel is prepared and synergistically injected into the bone defect site with BiInSn. BiInSn solidifies and releases heat during injection, while the thermosensitive hydrogel absorbs heat and transforms into a gel state, encapsulating BiInSn. Therefore, the surrounding bone tissue is effectively protected from thermal damage. When BiInSn and the thermosensitive hydrogel were injected synergistically, in vitro thermal experiments revealed that the maximum temperature of the surrounding bone tissue reached 42°C. This temperature is below the 47°C threshold, which causes permanent damage to bone tissues. In vivo experiments demonstrated that rats in the BiInSn-thermosensitive hydrogel group exhibited better recovery at the bone defect sites. These results suggest that the synergistic injection of Bi-based alloy and thermosensitive hydrogel is beneficial in reducing thermal damage to bone tissue, guiding bone tissue growth, and effectively facilitating the repair of bone defects.
期刊介绍:
Science China Technological Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Technological Sciences is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of technological sciences.
Brief reports present short reports in a timely manner of the latest important results.