Kneser-type oscillation theorems for second-order functional differential equations with unbounded neutral coefficients

Pub Date : 2024-07-01 DOI:10.1515/ms-2024-0049
Irena Jadlovská, George E. Chatzarakis, Ercan Tunç
{"title":"Kneser-type oscillation theorems for second-order functional differential equations with unbounded neutral coefficients","authors":"Irena Jadlovská, George E. Chatzarakis, Ercan Tunç","doi":"10.1515/ms-2024-0049","DOIUrl":null,"url":null,"abstract":"In this paper, we initiate the study of asymptotic and oscillatory properties of solutions to second-order functional differential equations with noncanonical operators and unbounded neutral coefficients, using a recent method of iteratively improved monotonicity properties of nonoscillatory solutions. Our results rely on ideas that essentially improve standard techniques for the investigation of differential equations with unbounded neutral terms with delay or advanced argument. The core of the method is presented in a form that suggests further generalizations for higher-order differential equations with unbounded neutral coefficients.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2024-0049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we initiate the study of asymptotic and oscillatory properties of solutions to second-order functional differential equations with noncanonical operators and unbounded neutral coefficients, using a recent method of iteratively improved monotonicity properties of nonoscillatory solutions. Our results rely on ideas that essentially improve standard techniques for the investigation of differential equations with unbounded neutral terms with delay or advanced argument. The core of the method is presented in a form that suggests further generalizations for higher-order differential equations with unbounded neutral coefficients.
分享
查看原文
具有无约束中性系数的二阶函数微分方程的克奈瑟型振荡定理
在本文中,我们利用一种迭代改进非振荡解单调性特性的最新方法,开始研究具有非经典算子和无约束中性系数的二阶函数微分方程解的渐近和振荡特性。我们的结果所依赖的思想,本质上是改进了研究具有延迟或高级论证的无约束中性项微分方程的标准技术。该方法的核心以一种形式呈现,建议进一步推广到具有无约束中性系数的高阶微分方程中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信