On the 𝓐-generators of the polynomial algebra as a module over the Steenrod algebra, I

Pub Date : 2024-07-01 DOI:10.1515/ms-2024-0058
Nguyen Khac Tin, Phan Phuong Dung, Hoang Nguyen Ly
{"title":"On the 𝓐-generators of the polynomial algebra as a module over the Steenrod algebra, I","authors":"Nguyen Khac Tin, Phan Phuong Dung, Hoang Nguyen Ly","doi":"10.1515/ms-2024-0058","DOIUrl":null,"url":null,"abstract":"Let 𝓟<jats:sub> <jats:italic>n</jats:italic> </jats:sub> := <jats:italic>H</jats:italic> <jats:sup>*</jats:sup>((ℝ<jats:italic>P</jats:italic> <jats:sup>∞</jats:sup>)<jats:sup> <jats:italic>n</jats:italic> </jats:sup>) ≅ ℤ<jats:sub>2</jats:sub>[<jats:italic>x</jats:italic> <jats:sub>1</jats:sub>, <jats:italic>x</jats:italic> <jats:sub>2</jats:sub>, …, <jats:italic>x</jats:italic> <jats:sub> <jats:italic>n</jats:italic> </jats:sub>] be the graded polynomial algebra over ℤ<jats:sub>2</jats:sub>, where ℤ<jats:sub>2</jats:sub> denotes the prime field of two elements. We investigate the Peterson hit problem for the polynomial algebra 𝓟<jats:sub> <jats:italic>n</jats:italic> </jats:sub>, viewed as a graded left module over the mod-2 Steenrod algebra, 𝓐. For <jats:italic>n</jats:italic> &gt; 4, this problem is still unsolved, even in the case of <jats:italic>n</jats:italic> = 5 with the help of computers. In this article, we study the hit problem for the case <jats:italic>n</jats:italic> = 6 in the generic degree <jats:italic>d<jats:sub>r</jats:sub> </jats:italic> = 6(2<jats:sup> <jats:italic>r</jats:italic> </jats:sup> − 1) + 4.2<jats:sup> <jats:italic>r</jats:italic> </jats:sup> with <jats:italic>r</jats:italic> an arbitrary non-negative integer. By considering ℤ<jats:sub>2</jats:sub> as a trivial 𝓐-module, then the hit problem is equivalent to the problem of finding a basis of ℤ<jats:sub>2</jats:sub>-vector space ℤ<jats:sub>2</jats:sub> ⊗<jats:sub>𝓐</jats:sub>𝓟<jats:sub> <jats:italic>n</jats:italic> </jats:sub>. The main goal of the current article is to explicitly determine an admissible monomial basis of the ℤ<jats:sub>2</jats:sub> vector space ℤ<jats:sub>2</jats:sub> ⊗<jats:sub>𝓐</jats:sub>𝓟<jats:sub>6</jats:sub> in some degrees. As an application, the behavior of the sixth Singer algebraic transfer in the degree 6(2<jats:sup> <jats:italic>r</jats:italic> </jats:sup> − 1) + 4.2<jats:sup> <jats:italic>r</jats:italic> </jats:sup> is also discussed at the end of this paper.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2024-0058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let 𝓟 n := H *((ℝP ) n ) ≅ ℤ2[x 1, x 2, …, x n ] be the graded polynomial algebra over ℤ2, where ℤ2 denotes the prime field of two elements. We investigate the Peterson hit problem for the polynomial algebra 𝓟 n , viewed as a graded left module over the mod-2 Steenrod algebra, 𝓐. For n > 4, this problem is still unsolved, even in the case of n = 5 with the help of computers. In this article, we study the hit problem for the case n = 6 in the generic degree dr = 6(2 r − 1) + 4.2 r with r an arbitrary non-negative integer. By considering ℤ2 as a trivial 𝓐-module, then the hit problem is equivalent to the problem of finding a basis of ℤ2-vector space ℤ2𝓐𝓟 n . The main goal of the current article is to explicitly determine an admissible monomial basis of the ℤ2 vector space ℤ2𝓐𝓟6 in some degrees. As an application, the behavior of the sixth Singer algebraic transfer in the degree 6(2 r − 1) + 4.2 r is also discussed at the end of this paper.
分享
查看原文
关于多项式代数的𝓐生成器作为斯泰恩罗德代数上的模块,I
设𝓟 n := H *((ℝP ∞) n ) ≅ ℤ2[x 1, x 2, ..., x n ] 是在ℤ2 上的分级多项式代数,其中ℤ2 表示两个元素的素域。我们研究了多项式代数 𝓟 n 的彼得森命中问题,它被视为模 2 斯泰恩德代数 𝓐 上的分级左模块。对于 n > 4,即使在 n = 5 的情况下,这个问题在计算机的帮助下也仍未解决。在本文中,我们将研究 n = 6 情况下的命中问题,一般度数为 dr = 6(2 r - 1) + 4.2 r,其中 r 为任意非负整数。把ℤ2 看作一个微不足道的𝓐模块,那么命中问题就等价于找到ℤ2-向量空间ℤ2 ⊗𝓐𝓟 n 的一个基的问题。本文的主要目标是明确地确定ℤ2 向量空间 ℤ2 ⊗𝓐𝓟6 在某些程度上的可容许单轴基。作为应用,本文最后还讨论了第六星格代数转移在 6(2 r - 1) + 4.2 r 度中的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信