Universal Enhancement Effect of Nonlinear Optical Response from Band Hybridization

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Junwen Lai, Jie Zhan, Peitao Liu, Tomonori Shirakawa, Yunoki Seiji, Xing‐Qiu Chen, Yan Sun
{"title":"Universal Enhancement Effect of Nonlinear Optical Response from Band Hybridization","authors":"Junwen Lai, Jie Zhan, Peitao Liu, Tomonori Shirakawa, Yunoki Seiji, Xing‐Qiu Chen, Yan Sun","doi":"10.1002/adom.202401143","DOIUrl":null,"url":null,"abstract":"Bulk photovoltaic effect, i.e. shift current, is a nonlinear second‐order optical response that can rectify an alternating current (AC) electric field into a direct current (DC). Depending on the wavelength of the incident light, shift current finds applications in various fields, including solar energy conversion and radiation detection. Its promising application in energy conversion and information processing has inspired investigations to uncover the relationship between shift current and electronic structures of materials. Despite numerous efforts dedicated to designing principles for strong bulk photovoltaic effect materials, the only widely accepted crucial parameter is the joint density of states (JDOS). In this study, employing effective model analysis and first‐principles calculations, an enhancement effect of bulk photovoltaic effect is found to arise from band hybridization that is typically along with anti‐crossing‐like electronic band structures, similar to the Berry curvature effects in intrinsic anomalous Hall conductivity. While this mechanism does not offer a comprehensive understanding of the relationship between electronic structure and the magnitude of bulk photovoltaic effect, it represents practical progress in the design of materials with strong bulk photovoltaic effect.","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adom.202401143","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bulk photovoltaic effect, i.e. shift current, is a nonlinear second‐order optical response that can rectify an alternating current (AC) electric field into a direct current (DC). Depending on the wavelength of the incident light, shift current finds applications in various fields, including solar energy conversion and radiation detection. Its promising application in energy conversion and information processing has inspired investigations to uncover the relationship between shift current and electronic structures of materials. Despite numerous efforts dedicated to designing principles for strong bulk photovoltaic effect materials, the only widely accepted crucial parameter is the joint density of states (JDOS). In this study, employing effective model analysis and first‐principles calculations, an enhancement effect of bulk photovoltaic effect is found to arise from band hybridization that is typically along with anti‐crossing‐like electronic band structures, similar to the Berry curvature effects in intrinsic anomalous Hall conductivity. While this mechanism does not offer a comprehensive understanding of the relationship between electronic structure and the magnitude of bulk photovoltaic effect, it represents practical progress in the design of materials with strong bulk photovoltaic effect.

Abstract Image

波段杂化对非线性光学响应的普遍增强效应
块状光生伏打效应(即位移电流)是一种非线性二阶光学响应,可将交流电场整流为直流电场。根据入射光波长的不同,位移电流可应用于太阳能转换和辐射探测等多个领域。移频电流在能量转换和信息处理方面的应用前景广阔,激发了人们研究移频电流与材料电子结构之间关系的热情。尽管在设计强体光电效应材料的原理方面做出了大量努力,但唯一被广泛接受的关键参数是联合态密度(JDOS)。在这项研究中,利用有效模型分析和第一原理计算,发现体光伏效应的增强效应源于典型的反交叉类电子能带结构的能带杂化,这与本征反常霍尔电导率中的贝里曲率效应类似。虽然这一机制并不能让人们全面理解电子结构与体光效应大小之间的关系,但它代表了在设计具有强体光效应的材料方面取得的实际进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信