Numerical solution of Poisson partial differential equation in high dimension using two-layer neural networks

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mathias Dus, Virginie Ehrlacher
{"title":"Numerical solution of Poisson partial differential equation in high dimension using two-layer neural networks","authors":"Mathias Dus, Virginie Ehrlacher","doi":"10.1090/mcom/3971","DOIUrl":null,"url":null,"abstract":"<p>The aim of this article is to analyze numerical schemes using two-layer neural networks with infinite width for the resolution of the high-dimensional Poisson partial differential equation with Neumann boundary condition. Using Barron’s representation of the solution [IEEE Trans. Inform. Theory 39 (1993), pp. 930–945] with a probability measure defined on the set of parameter values, the energy is minimized thanks to a gradient curve dynamic on the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=\"application/x-tex\">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-Wasserstein space of the set of parameter values defining the neural network. Inspired by the work from Bach and Chizat [On the global convergence of gradient descent for over-parameterized models using optimal transport, 2018; ICM–International Congress of Mathematicians, EMS Press, Berlin, 2023], we prove that if the gradient curve converges, then the represented function is the solution of the elliptic equation considered. Numerical experiments are given to show the potential of the method.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this article is to analyze numerical schemes using two-layer neural networks with infinite width for the resolution of the high-dimensional Poisson partial differential equation with Neumann boundary condition. Using Barron’s representation of the solution [IEEE Trans. Inform. Theory 39 (1993), pp. 930–945] with a probability measure defined on the set of parameter values, the energy is minimized thanks to a gradient curve dynamic on the 2 2 -Wasserstein space of the set of parameter values defining the neural network. Inspired by the work from Bach and Chizat [On the global convergence of gradient descent for over-parameterized models using optimal transport, 2018; ICM–International Congress of Mathematicians, EMS Press, Berlin, 2023], we prove that if the gradient curve converges, then the represented function is the solution of the elliptic equation considered. Numerical experiments are given to show the potential of the method.

利用双层神经网络数值求解高维度泊松偏微分方程
本文旨在分析使用无限宽双层神经网络的数值方案,以解决具有诺伊曼边界条件的高维泊松偏微分方程。利用巴伦的求解表示法[IEEE Trans. Inform. Theory 39 (1993), pp.受 Bach 和 Chizat [On the global convergence of gradient descent for over-parameterized models using optimal transport, 2018; ICM-International Congress of Mathematicians, EMS Press, Berlin, 2023] 工作的启发,我们证明,如果梯度曲线收敛,那么所表示的函数就是所考虑的椭圆方程的解。我们给出了数值实验,以展示该方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信