{"title":"Extensible grid sampling for quantile estimation","authors":"Jingyu Tan, Zhijian He, Xiaoqun Wang","doi":"10.1090/mcom/3986","DOIUrl":null,"url":null,"abstract":"<p>Quantiles are used as a measure of risk in many stochastic systems. We study the estimation of quantiles with the Hilbert space-filling curve (HSFC) sampling scheme that transforms specifically chosen one-dimensional points into high dimensional stratified samples while still remaining the extensibility. We study the convergence and asymptotic normality for the estimate based on HSFC. By a generalized Dvoretzky–Kiefer–Wolfowitz inequality for independent but not identically distributed samples, we establish the strong consistency for such an estimator. We find that under certain conditions, the distribution of the quantile estimator based on HSFC is asymptotically normal. The asymptotic variance is of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis n Superscript negative 1 minus 1 slash d Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>d</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(n^{-1-1/d})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when using <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> HSFC-based quadrature points in dimension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d\"> <mml:semantics> <mml:mi>d</mml:mi> <mml:annotation encoding=\"application/x-tex\">d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which is more efficient than the Monte Carlo sampling and the Latin hypercube sampling. Since the asymptotic variance does not admit an explicit form, we establish an asymptotically valid confidence interval by the batching method. We also prove a Bahadur representation for the quantile estimator based on HSFC. Numerical experiments show that the quantile estimator is asymptotically normal with a comparable mean squared error rate of randomized quasi-Monte Carlo (RQMC) sampling. Moreover, the coverage of the confidence intervals constructed with HSFC is better than that with RQMC.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"213 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3986","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Quantiles are used as a measure of risk in many stochastic systems. We study the estimation of quantiles with the Hilbert space-filling curve (HSFC) sampling scheme that transforms specifically chosen one-dimensional points into high dimensional stratified samples while still remaining the extensibility. We study the convergence and asymptotic normality for the estimate based on HSFC. By a generalized Dvoretzky–Kiefer–Wolfowitz inequality for independent but not identically distributed samples, we establish the strong consistency for such an estimator. We find that under certain conditions, the distribution of the quantile estimator based on HSFC is asymptotically normal. The asymptotic variance is of O(n−1−1/d)O(n^{-1-1/d}) when using nn HSFC-based quadrature points in dimension dd, which is more efficient than the Monte Carlo sampling and the Latin hypercube sampling. Since the asymptotic variance does not admit an explicit form, we establish an asymptotically valid confidence interval by the batching method. We also prove a Bahadur representation for the quantile estimator based on HSFC. Numerical experiments show that the quantile estimator is asymptotically normal with a comparable mean squared error rate of randomized quasi-Monte Carlo (RQMC) sampling. Moreover, the coverage of the confidence intervals constructed with HSFC is better than that with RQMC.
在许多随机系统中,量值被用作风险度量。我们研究了利用希尔伯特空间填充曲线(HSFC)采样方案对量化值进行估计的问题,该方案将特定选择的一维点转化为高维分层样本,同时仍保持可扩展性。我们研究了基于 HSFC 的估计值的收敛性和渐近正态性。通过对独立但非同分布样本的广义 Dvoretzky-Kiefer-Wolfowitz 不等式,我们建立了这种估计器的强一致性。我们发现,在某些条件下,基于 HSFC 的量化估计量的分布是渐近正态的。当在 d d 维使用 n n 个基于 HSFC 的正交点时,渐近方差为 O ( n - 1 - 1 / d ) O(n^{-1-1/d}) ,这比蒙特卡罗抽样和拉丁超立方体抽样更有效。由于渐近方差没有明确的形式,我们通过批处理方法建立了渐近有效的置信区间。我们还证明了基于 HSFC 的量化估计器的 Bahadur 表示。数值实验表明,量值估计器是渐近正态的,其均方误差率与随机准蒙特卡罗(RQMC)抽样相当。此外,用 HSFC 构建的置信区间的覆盖率也优于 RQMC。
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.