Emanuel Carneiro, Micah Milinovich, Antonio Pedro Ramos
{"title":"Fourier optimization and Montgomery’s pair correlation conjecture","authors":"Emanuel Carneiro, Micah Milinovich, Antonio Pedro Ramos","doi":"10.1090/mcom/3990","DOIUrl":null,"url":null,"abstract":"<p>Assuming the Riemann hypothesis, we improve the current upper and lower bounds for the average value of Montgomery’s function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F left-parenthesis alpha comma upper T right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">F(\\alpha , T)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over long intervals by means of a Fourier optimization framework. The function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F left-parenthesis alpha comma upper T right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">F(\\alpha , T)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is often used to study the pair correlation of the non-trivial zeros of the Riemann zeta-function. Two ideas play a central role in our approach: (i) the introduction of new averaging mechanisms in our conceptual framework and (ii) the full use of the class of test functions introduced by Cohn and Elkies for the sphere packing bounds, going beyond the usual class of bandlimited functions. We conclude that such an average value, that is conjectured to be <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=\"application/x-tex\">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, lies between <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0.9303\"> <mml:semantics> <mml:mn>0.9303</mml:mn> <mml:annotation encoding=\"application/x-tex\">0.9303</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1.3208\"> <mml:semantics> <mml:mn>1.3208</mml:mn> <mml:annotation encoding=\"application/x-tex\">1.3208</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our Fourier optimization framework also yields an improvement on the current bounds for the analogous problem concerning the non-trivial zeros in the family of Dirichlet <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\"application/x-tex\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-functions.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"20 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3990","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Assuming the Riemann hypothesis, we improve the current upper and lower bounds for the average value of Montgomery’s function F(α,T)F(\alpha , T) over long intervals by means of a Fourier optimization framework. The function F(α,T)F(\alpha , T) is often used to study the pair correlation of the non-trivial zeros of the Riemann zeta-function. Two ideas play a central role in our approach: (i) the introduction of new averaging mechanisms in our conceptual framework and (ii) the full use of the class of test functions introduced by Cohn and Elkies for the sphere packing bounds, going beyond the usual class of bandlimited functions. We conclude that such an average value, that is conjectured to be 11, lies between 0.93030.9303 and 1.32081.3208. Our Fourier optimization framework also yields an improvement on the current bounds for the analogous problem concerning the non-trivial zeros in the family of Dirichlet LL-functions.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.