A modular Poincaré–Wirtinger inequality for Sobolev spaces with variable exponents

Elisa Davoli, Giovanni Di Fratta, Alberto Fiorenza, Leon Happ
{"title":"A modular Poincaré–Wirtinger inequality for Sobolev spaces with variable exponents","authors":"Elisa Davoli, Giovanni Di Fratta, Alberto Fiorenza, Leon Happ","doi":"10.1007/s00030-024-00977-w","DOIUrl":null,"url":null,"abstract":"<p>In the context of Sobolev spaces with variable exponents, Poincaré–Wirtinger inequalities are possible as soon as Luxemburg norms are considered. On the other hand, modular versions of the inequalities in the expected form </p><span>$$\\begin{aligned} \\int _\\Omega \\left| f(x)-\\langle f\\rangle _{\\Omega }\\right| ^{p(x)} \\ {\\textrm{d} x} \\leqslant C \\int _\\Omega |\\nabla f(x)|^{p(x)}{\\textrm{d} x}, \\end{aligned}$$</span><p>are known to be <i>false</i>. As a result, all available modular versions of the Poincaré–Wirtinger inequality in the variable-exponent setting always contain extra terms that do not disappear in the constant exponent case, preventing such inequalities from reducing to the classical ones in the constant exponent setting. This obstruction is commonly believed to be an unavoidable anomaly of the variable exponent setting. The main aim of this paper is to show that this is not the case, i.e., that a consistent generalization of the Poincaré–Wirtinger inequality to the variable exponent setting is indeed possible. Our contribution is threefold. First, we establish that a modular Poincaré–Wirtinger inequality particularizing to the classical one in the constant exponent case is indeed conceivable. We show that if <span>\\(\\Omega \\subset \\mathbb {R}^n \\)</span> is a bounded Lipschitz domain, and if <span>\\(p\\in L^\\infty (\\Omega )\\)</span>, <span>\\(p \\geqslant 1\\)</span>, then for every <span>\\(f\\in C^\\infty (\\bar{\\Omega })\\)</span> the following generalized Poincaré–Wirtinger inequality holds </p><span>$$\\begin{aligned} \\int _\\Omega \\left| f(x)-\\langle f\\rangle _{\\Omega }\\right| ^{p(x)} \\ {\\textrm{d} x} \\leqslant C \\int _\\Omega \\int _\\Omega \\frac{|\\nabla f(z)|^{p(x)}}{|z-x|^{n-1}}\\ {\\textrm{d} z}{\\textrm{d} x}, \\end{aligned}$$</span><p>where <span>\\(\\langle f\\rangle _{\\Omega }\\)</span> denotes the mean of <span>\\(f\\)</span> over <span>\\(\\Omega \\)</span>, and <span>\\(C&gt;0\\)</span> is a positive constant depending only on <span>\\(\\Omega \\)</span> and <span>\\(\\Vert p\\Vert _{L^\\infty (\\Omega )}\\)</span>. Second, our argument is concise and constructive and does not rely on compactness results. Third, we additionally provide geometric information on the best Poincaré–Wirtinger constant on Lipschitz domains.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"182 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00977-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of Sobolev spaces with variable exponents, Poincaré–Wirtinger inequalities are possible as soon as Luxemburg norms are considered. On the other hand, modular versions of the inequalities in the expected form

$$\begin{aligned} \int _\Omega \left| f(x)-\langle f\rangle _{\Omega }\right| ^{p(x)} \ {\textrm{d} x} \leqslant C \int _\Omega |\nabla f(x)|^{p(x)}{\textrm{d} x}, \end{aligned}$$

are known to be false. As a result, all available modular versions of the Poincaré–Wirtinger inequality in the variable-exponent setting always contain extra terms that do not disappear in the constant exponent case, preventing such inequalities from reducing to the classical ones in the constant exponent setting. This obstruction is commonly believed to be an unavoidable anomaly of the variable exponent setting. The main aim of this paper is to show that this is not the case, i.e., that a consistent generalization of the Poincaré–Wirtinger inequality to the variable exponent setting is indeed possible. Our contribution is threefold. First, we establish that a modular Poincaré–Wirtinger inequality particularizing to the classical one in the constant exponent case is indeed conceivable. We show that if \(\Omega \subset \mathbb {R}^n \) is a bounded Lipschitz domain, and if \(p\in L^\infty (\Omega )\), \(p \geqslant 1\), then for every \(f\in C^\infty (\bar{\Omega })\) the following generalized Poincaré–Wirtinger inequality holds

$$\begin{aligned} \int _\Omega \left| f(x)-\langle f\rangle _{\Omega }\right| ^{p(x)} \ {\textrm{d} x} \leqslant C \int _\Omega \int _\Omega \frac{|\nabla f(z)|^{p(x)}}{|z-x|^{n-1}}\ {\textrm{d} z}{\textrm{d} x}, \end{aligned}$$

where \(\langle f\rangle _{\Omega }\) denotes the mean of \(f\) over \(\Omega \), and \(C>0\) is a positive constant depending only on \(\Omega \) and \(\Vert p\Vert _{L^\infty (\Omega )}\). Second, our argument is concise and constructive and does not rely on compactness results. Third, we additionally provide geometric information on the best Poincaré–Wirtinger constant on Lipschitz domains.

Abstract Image

具有可变指数的索波列夫空间的模态 Poincaré-Wirtinger 不等式
在具有可变指数的索波列夫空间中,只要考虑到卢森堡规范,就有可能出现波恩卡-维尔廷格不等式。另一方面,预期形式 $$\begin{aligned} 不等式的模块化版本也是如此。\int _\Omega \left| f(x)-\langle f\rangle _{\Omega }\right| ^{p(x)} \ {\textrm{d} x} \leqslant C \int _\Omega ||\nabla f(x)|^{p(x)}{\textrm{d} x},\end{aligned}$$已知是假的。因此,在变指数情况下,所有可用的模块化版本的 Poincaré-Wirtinger 不等式总是包含在恒指数情况下不会消失的额外项,从而使这些不等式无法还原为恒指数情况下的经典不等式。人们普遍认为这种障碍是变指数设置中不可避免的异常现象。本文的主要目的是证明事实并非如此,即 Poincaré-Wirtinger 不等式确实有可能在变指数环境中得到一致的推广。我们的贡献有三方面。首先,我们证明了在恒定指数情况下,模块化的波恩卡-维尔廷格不等式与经典的波恩卡-维尔廷格不等式的特殊化确实是可以想象的。我们证明,如果(Omega 子集)是一个有界的 Lipschitz 域,并且如果(p/in L/infty (\Omega )\), (p/geqslant 1/),那么对于每一个(f/in C/infty (\bar{\Omega })/),下面的广义 Poincaré-Wirtinger 不等式成立 $$begin{aligned}\f(x)-langle f\rangle _{\Omega }\right| ^{p(x)} {\textrm{d} x} \leqslant C \int _\Omega \int _\Omega \frac{|\nabla f(z)|^{p(x)}}{|z-x|^{n-1}}\ {\textrm{d} z}{\textrm{d} x}、\end{aligned}$$其中((langle f\rangle _\Omega })表示(f)在(\Omega \)上的平均值,(C>;0) 是一个正常量,只取决于 ( ( (Omega) )和 ( ( ( ( (Vert p\Vert _{L^\infty (\Omega )}\ ) )。其次,我们的论证是简洁的、建设性的,并不依赖于紧凑性结果。第三,我们还提供了关于 Lipschitz 域上最佳 Poincaré-Wirtinger 常量的几何信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信