A Geometric Splitting of the Motive of $\textrm{GL}_n$

W. Sebastian Gant
{"title":"A Geometric Splitting of the Motive of $\\textrm{GL}_n$","authors":"W. Sebastian Gant","doi":"arxiv-2406.14687","DOIUrl":null,"url":null,"abstract":"A paper by Haynes Miller shows that there is a filtration on the unitary\ngroups that splits in the stable homotopy category, where the stable summands\nare certain Thom spaces over Grassmannians. We give an algebraic version of\nthis result in the context of Voevodsky's tensor triangulated category of\nstable motivic complexes $\\textbf{DM}(k,R)$, where $k$ is a field.\nSpecifically, we show that there are algebraic analogs of the Thom spaces\nappearing in Miller's splitting that give rise to an analogous splitting of the\nmotive $M(\\textrm{GL}_n)$ in $\\textbf{DM}(k,R)$, where $\\textrm{GL}_n$ is the\ngeneral linear group scheme over $k$.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.14687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A paper by Haynes Miller shows that there is a filtration on the unitary groups that splits in the stable homotopy category, where the stable summands are certain Thom spaces over Grassmannians. We give an algebraic version of this result in the context of Voevodsky's tensor triangulated category of stable motivic complexes $\textbf{DM}(k,R)$, where $k$ is a field. Specifically, we show that there are algebraic analogs of the Thom spaces appearing in Miller's splitting that give rise to an analogous splitting of the motive $M(\textrm{GL}_n)$ in $\textbf{DM}(k,R)$, where $\textrm{GL}_n$ is the general linear group scheme over $k$.
$\textrm{GL}_n$ 动机的几何拆分
海恩斯-米勒(Haynes Miller)的一篇论文表明,在单元群上存在一个滤波,它在稳定同调范畴中分裂,其中稳定和是格拉斯曼上的某些托姆空间。我们在沃沃茨基的稳定动机复数张量三角范畴 $\textbf{DM}(k,R)$(其中 $k$ 是一个域)中给出了这一结果的代数版本。具体地说,我们证明了米勒分裂中出现的托姆空间的代数类似物,它们在$\textbf{DM}(k,R)$中引起了张量$M(\textrm{GL}_n)$的类似分裂,其中$\textrm{GL}_n$是超过$k$的一般线性群方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信