Computations regarding the torsion homology of Oeljeklaus-Toma manifolds

Dung Phuong PhanGAATI, UPF, Tuan Anh BuiHCMUS, Alexander D. RahmGAATI, UPF
{"title":"Computations regarding the torsion homology of Oeljeklaus-Toma manifolds","authors":"Dung Phuong PhanGAATI, UPF, Tuan Anh BuiHCMUS, Alexander D. RahmGAATI, UPF","doi":"arxiv-2406.14942","DOIUrl":null,"url":null,"abstract":"This article investigates the torsion homology behaviour in towers of\nOeljeklaus-Toma (OT) manifolds. This adapts an idea of Silver and Williams from\nknot theory to OT-manifolds and extends it to higher degree homology groups.In\nthe case of surfaces, i.e. Inoue surfaces of type $S^{0}$, the torsion grows\nexponentially in both $H_1$ and $H_2$ according to a parameters which already\nplays a role in Inoue's classical paper. This motivates running example\ncalculations in all homological degrees.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"206 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.14942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates the torsion homology behaviour in towers of Oeljeklaus-Toma (OT) manifolds. This adapts an idea of Silver and Williams from knot theory to OT-manifolds and extends it to higher degree homology groups.In the case of surfaces, i.e. Inoue surfaces of type $S^{0}$, the torsion grows exponentially in both $H_1$ and $H_2$ according to a parameters which already plays a role in Inoue's classical paper. This motivates running example calculations in all homological degrees.
有关奥勒耶克劳斯-托马流形扭转同调的计算
本文研究了奥勒耶克劳斯-托马(OT)流形塔中的扭转同调行为。在曲面(即 S^{0}$ 类型的井上曲面)的情况下,扭力在 $H_1$ 和 $H_2$ 中根据一个参数呈指数增长,这个参数在井上的经典论文中已经发挥了作用。这促使我们在所有同调度中进行实例计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信