Ana Lillian Martin-Del-Pozzo, César Alberto Santos Morales
{"title":"Transition of dome formation to sudden explosive eruptions at Popocatépetl, Mexico: magnetic indicators","authors":"Ana Lillian Martin-Del-Pozzo, César Alberto Santos Morales","doi":"10.3389/feart.2024.1204859","DOIUrl":null,"url":null,"abstract":"Transitions from effusive to explosive activity can increase hazards making it crucial to define early indicators such as changes in the magnetic signals. After more than 80 cycles of crater-dome extrusion and destruction from 1996 on, Popocatépetl volcano (Mexico) experienced changes in its behavior from March 15 to 18 July 2019, when no lava domes were observed. Some of the domes behaved as contained lava flows within the crater floor (pancakes) while others were more irregular-shaped. Activity decreased considerably over this 2019 interval except for the unexpected explosions in March and June, that produced ash plumes reaching up to 14,000 m a.s.l. In order to investigate the causes of the transition from effusive to explosive behavior in March and June, we analyzed the time series from the magnetic monitoring network at Popocatépetl volcano between October 2018 and December 2019. The raw signals were analyzed by weighted differences (WD) based on the elimination of non-local changes from the total intensity values of the geomagnetic field and the discrete-time continuous wavelet transform was used to evaluate the local variations of energy within the time series. The high energy periods (linked to negative magnetic anomalies) are induced by magma ascent associated with movement within the conduit. They indicate that the sudden explosions were due to the ascent of several magma batches that were slowed during ascent and were not able to reach the surface. Changes in the rheology of the lava are linked to the influx of several batches of magma with different compositions as well as to compaction by gas loss when ascending andesitic magma pushed out overlying more viscous degassed magma clearing the conduit, which can explain why these sudden explosions were more energetic. Several geophysical data sets as well as tephra compositions were integrated to support this conclusion. The correlated multiparameters also confirm that geomagnetic volcano monitoring has been essential in understanding the processes that drive the observed changes in eruptive behavior. We present new evidence for the detection of transient events produced by magma ascent and changes in the feeding system of Popocatépetl volcano with wavelet analysis. Detailed vulcanomagnetic processing, especially when it is correlated with other monitoring parameters, provides information on ascending magma and several conduit processes that would otherwise be camouflaged. Ascending batches may precede an eruption but they can also ascend in several pulses indicating how dome growth occurs.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3389/feart.2024.1204859","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Transitions from effusive to explosive activity can increase hazards making it crucial to define early indicators such as changes in the magnetic signals. After more than 80 cycles of crater-dome extrusion and destruction from 1996 on, Popocatépetl volcano (Mexico) experienced changes in its behavior from March 15 to 18 July 2019, when no lava domes were observed. Some of the domes behaved as contained lava flows within the crater floor (pancakes) while others were more irregular-shaped. Activity decreased considerably over this 2019 interval except for the unexpected explosions in March and June, that produced ash plumes reaching up to 14,000 m a.s.l. In order to investigate the causes of the transition from effusive to explosive behavior in March and June, we analyzed the time series from the magnetic monitoring network at Popocatépetl volcano between October 2018 and December 2019. The raw signals were analyzed by weighted differences (WD) based on the elimination of non-local changes from the total intensity values of the geomagnetic field and the discrete-time continuous wavelet transform was used to evaluate the local variations of energy within the time series. The high energy periods (linked to negative magnetic anomalies) are induced by magma ascent associated with movement within the conduit. They indicate that the sudden explosions were due to the ascent of several magma batches that were slowed during ascent and were not able to reach the surface. Changes in the rheology of the lava are linked to the influx of several batches of magma with different compositions as well as to compaction by gas loss when ascending andesitic magma pushed out overlying more viscous degassed magma clearing the conduit, which can explain why these sudden explosions were more energetic. Several geophysical data sets as well as tephra compositions were integrated to support this conclusion. The correlated multiparameters also confirm that geomagnetic volcano monitoring has been essential in understanding the processes that drive the observed changes in eruptive behavior. We present new evidence for the detection of transient events produced by magma ascent and changes in the feeding system of Popocatépetl volcano with wavelet analysis. Detailed vulcanomagnetic processing, especially when it is correlated with other monitoring parameters, provides information on ascending magma and several conduit processes that would otherwise be camouflaged. Ascending batches may precede an eruption but they can also ascend in several pulses indicating how dome growth occurs.
期刊介绍:
Frontiers in Earth Science is an open-access journal that aims to bring together and publish on a single platform the best research dedicated to our planet.
This platform hosts the rapidly growing and continuously expanding domains in Earth Science, involving the lithosphere (including the geosciences spectrum), the hydrosphere (including marine geosciences and hydrology, complementing the existing Frontiers journal on Marine Science) and the atmosphere (including meteorology and climatology). As such, Frontiers in Earth Science focuses on the countless processes operating within and among the major spheres constituting our planet. In turn, the understanding of these processes provides the theoretical background to better use the available resources and to face the major environmental challenges (including earthquakes, tsunamis, eruptions, floods, landslides, climate changes, extreme meteorological events): this is where interdependent processes meet, requiring a holistic view to better live on and with our planet.
The journal welcomes outstanding contributions in any domain of Earth Science.
The open-access model developed by Frontiers offers a fast, efficient, timely and dynamic alternative to traditional publication formats. The journal has 20 specialty sections at the first tier, each acting as an independent journal with a full editorial board. The traditional peer-review process is adapted to guarantee fairness and efficiency using a thorough paperless process, with real-time author-reviewer-editor interactions, collaborative reviewer mandates to maximize quality, and reviewer disclosure after article acceptance. While maintaining a rigorous peer-review, this system allows for a process whereby accepted articles are published online on average 90 days after submission.
General Commentary articles as well as Book Reviews in Frontiers in Earth Science are only accepted upon invitation.