$ω$-regular Expression Synthesis from Transition-Based Büchi Automata

Charles Pert, Dalal Alrajeh, Alessandra Russo
{"title":"$ω$-regular Expression Synthesis from Transition-Based Büchi Automata","authors":"Charles Pert, Dalal Alrajeh, Alessandra Russo","doi":"arxiv-2406.08136","DOIUrl":null,"url":null,"abstract":"A popular method for modelling reactive systems is to use $\\omega$-regular\nlanguages. These languages can be represented as nondeterministic B\\\"uchi\nautomata (NBAs) or $\\omega$-regular expressions. Existing methods synthesise\nexpressions from state-based NBAs. Synthesis from transition-based NBAs is\ntraditionally done by transforming transition-based NBAs into state-based NBAs.\nThis transformation, however, can increase the complexity of the synthesised\nexpressions. This paper proposes a novel method for directly synthesising\n$\\omega$-regular expressions from transition-based NBAs. We prove that the\nmethod is sound and complete. Our empirical results show that the\n$\\omega$-regular expressions synthesised from transition-based NBAs are more\ncompact than those synthesised from state-based NBAs. This is particularly the\ncase for NBAs computed from obligation, reactivity, safety and recurrence-type\nLTL formulas, reporting in the latter case an average reduction of over 50%. We\nalso show that our method successfully synthesises $\\omega$-regular expressions\nfrom more LTL formulas when using a transition-based instead of a state-based\nNBA.","PeriodicalId":501124,"journal":{"name":"arXiv - CS - Formal Languages and Automata Theory","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Formal Languages and Automata Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.08136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A popular method for modelling reactive systems is to use $\omega$-regular languages. These languages can be represented as nondeterministic B\"uchi automata (NBAs) or $\omega$-regular expressions. Existing methods synthesise expressions from state-based NBAs. Synthesis from transition-based NBAs is traditionally done by transforming transition-based NBAs into state-based NBAs. This transformation, however, can increase the complexity of the synthesised expressions. This paper proposes a novel method for directly synthesising $\omega$-regular expressions from transition-based NBAs. We prove that the method is sound and complete. Our empirical results show that the $\omega$-regular expressions synthesised from transition-based NBAs are more compact than those synthesised from state-based NBAs. This is particularly the case for NBAs computed from obligation, reactivity, safety and recurrence-type LTL formulas, reporting in the latter case an average reduction of over 50%. We also show that our method successfully synthesises $\omega$-regular expressions from more LTL formulas when using a transition-based instead of a state-based NBA.
基于转换的布基自动机的ω$$正则表达式合成
对反应式系统进行建模的一种流行方法是使用$\omega$正则表达式语言。这些语言可以表示为非确定性正则表达式(NBAs)或$\omega$-正则表达式。现有的方法是从基于状态的 NBA 合成表达式。然而,这种转换会增加合成表达式的复杂性。本文提出了一种从基于转换的 NBA 直接合成$\omega$正则表达式的新方法。我们证明了该方法的合理性和完整性。我们的实证结果表明,从基于过渡的 NBA 合成的$omega$正则表达式比从基于状态的 NBA 合成的表达式更紧凑。尤其是根据义务、反应性、安全性和递推型 LTL 公式计算出的 NBA,在后一种情况下平均减少了 50% 以上。我们还表明,当使用基于转换的 NBA 而不是基于状态的 NBA 时,我们的方法成功地从更多的 LTL 公式中合成了 $\omega$-正则表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信