PDFA Distillation via String Probability Queries {PDFA Distillation via String Probability Queries}

Robert Baumgartner, Sicco Verwer
{"title":"PDFA Distillation via String Probability Queries {PDFA Distillation via String Probability Queries}","authors":"Robert Baumgartner, Sicco Verwer","doi":"arxiv-2406.18328","DOIUrl":null,"url":null,"abstract":"Probabilistic deterministic finite automata (PDFA) are discrete event systems\nmodeling conditional probabilities over languages: Given an already seen\nsequence of tokens they return the probability of tokens of interest to appear\nnext. These types of models have gained interest in the domain of explainable\nmachine learning, where they are used as surrogate models for neural networks\ntrained as language models. In this work we present an algorithm to distill\nPDFA from neural networks. Our algorithm is a derivative of the L# algorithm\nand capable of learning PDFA from a new type of query, in which the algorithm\ninfers conditional probabilities from the probability of the queried string to\noccur. We show its effectiveness on a recent public dataset by distilling PDFA\nfrom a set of trained neural networks.","PeriodicalId":501124,"journal":{"name":"arXiv - CS - Formal Languages and Automata Theory","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Formal Languages and Automata Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.18328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Probabilistic deterministic finite automata (PDFA) are discrete event systems modeling conditional probabilities over languages: Given an already seen sequence of tokens they return the probability of tokens of interest to appear next. These types of models have gained interest in the domain of explainable machine learning, where they are used as surrogate models for neural networks trained as language models. In this work we present an algorithm to distill PDFA from neural networks. Our algorithm is a derivative of the L# algorithm and capable of learning PDFA from a new type of query, in which the algorithm infers conditional probabilities from the probability of the queried string to occur. We show its effectiveness on a recent public dataset by distilling PDFA from a set of trained neural networks.
通过字符串概率查询进行 PDFA 提炼 {通过字符串概率查询进行 PDFA 提炼}.
概率确定性有限自动机(PDFA)是模拟语言条件概率的离散事件系统:给定一个已经出现过的词组序列,它们会返回下一个出现的相关词组的概率。这些类型的模型在可解释机器学习领域引起了人们的兴趣,它们被用作神经网络受限语言模型的替代模型。在这项工作中,我们提出了一种从神经网络中提炼 PDFA 的算法。我们的算法是 L# 算法的衍生算法,能够从一种新的查询类型中学习 PDFA,在这种查询类型中,算法从查询字符串发生的概率中推导出条件概率。通过从一组训练有素的神经网络中提炼出 PDFA,我们在最近的一个公开数据集上展示了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信