A defect detection method for industrial aluminum sheet surface based on improved YOLOv8 algorithm

IF 1.9 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Luyang Wang, Gongxue Zhang, Weijun Wang, Jinyuan Chen, Xuyao Jiang, Hai Yuan, Zucheng Huang
{"title":"A defect detection method for industrial aluminum sheet surface based on improved YOLOv8 algorithm","authors":"Luyang Wang, Gongxue Zhang, Weijun Wang, Jinyuan Chen, Xuyao Jiang, Hai Yuan, Zucheng Huang","doi":"10.3389/fphy.2024.1419998","DOIUrl":null,"url":null,"abstract":"In industrial aluminum sheet surface defect detection, false detection, missed detection, and low efficiency are prevalent challenges. Therefore, this paper introduces an improved YOLOv8 algorithm to address these issues. Specifically, the C2f-DSConv module incorporated enhances the network’s feature extraction capabilities, and a small target detection layer (160 × 160) improves the recognition of small targets. Besides, the DyHead dynamic detection head augments target representation, and MPDIoU replaces the regression loss function to refine detection accuracy. The improved algorithm is named YOLOv8n-DSDM, with experimental evaluations on an industrial aluminum sheet surface defect dataset demonstrating its effectiveness. YOLOv8n-DSDM achieves an average mean average precision (mAP50%) of 94.7%, demonstrating a 3.5% improvement over the original YOLOv8n. With a single-frame detection time of 2.5 ms and a parameter count of 3.77 M, YOLOv8n-DSDM meets the real-time detection requirements for industrial applications.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":"149 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fphy.2024.1419998","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In industrial aluminum sheet surface defect detection, false detection, missed detection, and low efficiency are prevalent challenges. Therefore, this paper introduces an improved YOLOv8 algorithm to address these issues. Specifically, the C2f-DSConv module incorporated enhances the network’s feature extraction capabilities, and a small target detection layer (160 × 160) improves the recognition of small targets. Besides, the DyHead dynamic detection head augments target representation, and MPDIoU replaces the regression loss function to refine detection accuracy. The improved algorithm is named YOLOv8n-DSDM, with experimental evaluations on an industrial aluminum sheet surface defect dataset demonstrating its effectiveness. YOLOv8n-DSDM achieves an average mean average precision (mAP50%) of 94.7%, demonstrating a 3.5% improvement over the original YOLOv8n. With a single-frame detection time of 2.5 ms and a parameter count of 3.77 M, YOLOv8n-DSDM meets the real-time detection requirements for industrial applications.
基于改进型 YOLOv8 算法的工业铝板表面缺陷检测方法
在工业铝板表面缺陷检测中,误检、漏检和低效率是普遍存在的难题。因此,本文引入了一种改进的 YOLOv8 算法来解决这些问题。具体而言,C2f-DSConv 模块的加入增强了网络的特征提取能力,小目标检测层(160 × 160)提高了对小目标的识别能力。此外,DyHead 动态检测头增强了目标表示,MPDIoU 取代了回归损失函数以提高检测精度。改进后的算法被命名为 YOLOv8n-DSDM,在工业铝板表面缺陷数据集上的实验评估证明了它的有效性。YOLOv8n-DSDM 的平均平均精度(mAP50%)达到 94.7%,比原来的 YOLOv8n 提高了 3.5%。YOLOv8n-DSDM 的单帧检测时间为 2.5 ms,参数数量为 3.77 M,符合工业应用的实时检测要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Physics
Frontiers in Physics Mathematics-Mathematical Physics
CiteScore
4.50
自引率
6.50%
发文量
1215
审稿时长
12 weeks
期刊介绍: Frontiers in Physics publishes rigorously peer-reviewed research across the entire field, from experimental, to computational and theoretical physics. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, engineers and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信