{"title":"Quadric cones on the boundary of the Mori cone for very general blowups of the plane","authors":"Ciro Ciliberto, Rick Miranda, Joaquim Roé","doi":"10.1007/s13348-024-00447-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper we show the existence of cones over a 8-dimensional rational sphere at the boundary of the Mori cone of the blow-up of the plane at <span>\\(s\\ge 13\\)</span> very general points. This gives evidence for De Fernex’s strong <span>\\(\\Delta \\)</span>-conjecture, which is known to imply Nagata’s conjecture. This also implies the existence of a multitude of good and wonderful rays as defined in Ciliberto et al. (Clay Math Proc 18:185–203, 2013).</p>","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":"62 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collectanea Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13348-024-00447-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we show the existence of cones over a 8-dimensional rational sphere at the boundary of the Mori cone of the blow-up of the plane at \(s\ge 13\) very general points. This gives evidence for De Fernex’s strong \(\Delta \)-conjecture, which is known to imply Nagata’s conjecture. This also implies the existence of a multitude of good and wonderful rays as defined in Ciliberto et al. (Clay Math Proc 18:185–203, 2013).
期刊介绍:
Collectanea Mathematica publishes original research peer reviewed papers of high quality in all fields of pure and applied mathematics. It is an international journal of the University of Barcelona and the oldest mathematical journal in Spain. It was founded in 1948 by José M. Orts. Previously self-published by the Institut de Matemàtica (IMUB) of the Universitat de Barcelona, as of 2011 it is published by Springer.