Some aspects of nonlinear dimensionality reduction

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Liwen Wang, Yongda Wang, Shifeng Xiong, Jiankui Yang
{"title":"Some aspects of nonlinear dimensionality reduction","authors":"Liwen Wang, Yongda Wang, Shifeng Xiong, Jiankui Yang","doi":"10.1007/s00180-024-01514-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper we discuss nonlinear dimensionality reduction within the framework of principal curves. We formulate dimensionality reduction as problems of estimating principal subspaces for both noiseless and noisy cases, and propose the corresponding iterative algorithms that modify existing principal curve algorithms. An R squared criterion is introduced to estimate the dimension of the principal subspace. In addition, we present new regression and density estimation strategies based on our dimensionality reduction algorithms. Theoretical analyses and numerical experiments show the effectiveness of the proposed methods.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"202 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01514-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we discuss nonlinear dimensionality reduction within the framework of principal curves. We formulate dimensionality reduction as problems of estimating principal subspaces for both noiseless and noisy cases, and propose the corresponding iterative algorithms that modify existing principal curve algorithms. An R squared criterion is introduced to estimate the dimension of the principal subspace. In addition, we present new regression and density estimation strategies based on our dimensionality reduction algorithms. Theoretical analyses and numerical experiments show the effectiveness of the proposed methods.

Abstract Image

非线性降维的一些方面
本文讨论了主曲线框架内的非线性降维问题。我们将降维问题表述为估计无噪声和噪声情况下的主子空间问题,并提出了相应的迭代算法,对现有的主曲线算法进行了修改。我们引入了 R 平方准则来估计主子空间的维度。此外,我们还基于降维算法提出了新的回归和密度估计策略。理论分析和数值实验表明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信