{"title":"A new, high-resolution atmospheric dataset for southern New Zealand, 2005–2020","authors":"Elena Kropač, Thomas Mölg, Nicolas J. Cullen","doi":"10.1002/gdj3.263","DOIUrl":null,"url":null,"abstract":"<p>The regional climate of New Zealand's South Island is shaped by the interaction of the Southern Hemisphere westerlies with the complex orography of the Southern Alps. Due to its isolated geographical setting in the south-west Pacific, the influence of the surrounding oceans on the atmospheric circulation is strong. Therefore, variations in sea surface temperature (SST) impact various spatial and temporal scales and are statistically detectable down to temperature anomalies and glacier mass changes in the high mountains of the Southern Alps. To enable future studies on the processes that govern the link between large-scale SST and local-scale high-mountain climate, we utilized dynamical downscaling with the Weather Research and Forecasting (WRF) model to produce a regional atmospheric modelling dataset for the South Island of New Zealand over a 16-year period between 2005 and 2020. The 2 km horizontal resolution ensures realistic representation of high-mountain topography and glaciers, as well as explicit simulation of convection. The dataset is extensively evaluated against observations, including weather station and satellite data, on both regional (in the inner domain) and local (on Brewster Glacier in the Southern Alps) scales. Variability in both atmospheric water content and near-surface meteorological conditions is well captured, with minor seasonal and spatial biases. The local high-mountain climate at Brewster Glacier, where land use and topographic model settings have been optimized, yields remarkable accuracy on both monthly and daily time scales. The data provide a valuable resource to researchers from various disciplines studying the local and regional impacts of climate variability on society, economies and ecosystems in New Zealand. The model output from the highest resolution model domain is available for download in daily temporal resolution from a public repository at the German Climate Computation Center (DKRZ) in Hamburg, Germany (Kropač et al., 2023; 16-year WRF simulation for the Southern Alps of New Zealand, World Data Center for Climate (WDCC) at DKRZ [data set]. https://doi.org/10.26050/WDCC/NZ-PROXY_16yrWRF).</p>","PeriodicalId":54351,"journal":{"name":"Geoscience Data Journal","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gdj3.263","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Data Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gdj3.263","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The regional climate of New Zealand's South Island is shaped by the interaction of the Southern Hemisphere westerlies with the complex orography of the Southern Alps. Due to its isolated geographical setting in the south-west Pacific, the influence of the surrounding oceans on the atmospheric circulation is strong. Therefore, variations in sea surface temperature (SST) impact various spatial and temporal scales and are statistically detectable down to temperature anomalies and glacier mass changes in the high mountains of the Southern Alps. To enable future studies on the processes that govern the link between large-scale SST and local-scale high-mountain climate, we utilized dynamical downscaling with the Weather Research and Forecasting (WRF) model to produce a regional atmospheric modelling dataset for the South Island of New Zealand over a 16-year period between 2005 and 2020. The 2 km horizontal resolution ensures realistic representation of high-mountain topography and glaciers, as well as explicit simulation of convection. The dataset is extensively evaluated against observations, including weather station and satellite data, on both regional (in the inner domain) and local (on Brewster Glacier in the Southern Alps) scales. Variability in both atmospheric water content and near-surface meteorological conditions is well captured, with minor seasonal and spatial biases. The local high-mountain climate at Brewster Glacier, where land use and topographic model settings have been optimized, yields remarkable accuracy on both monthly and daily time scales. The data provide a valuable resource to researchers from various disciplines studying the local and regional impacts of climate variability on society, economies and ecosystems in New Zealand. The model output from the highest resolution model domain is available for download in daily temporal resolution from a public repository at the German Climate Computation Center (DKRZ) in Hamburg, Germany (Kropač et al., 2023; 16-year WRF simulation for the Southern Alps of New Zealand, World Data Center for Climate (WDCC) at DKRZ [data set]. https://doi.org/10.26050/WDCC/NZ-PROXY_16yrWRF).
Geoscience Data JournalGEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
5.90
自引率
9.40%
发文量
35
审稿时长
4 weeks
期刊介绍:
Geoscience Data Journal provides an Open Access platform where scientific data can be formally published, in a way that includes scientific peer-review. Thus the dataset creator attains full credit for their efforts, while also improving the scientific record, providing version control for the community and allowing major datasets to be fully described, cited and discovered.
An online-only journal, GDJ publishes short data papers cross-linked to – and citing – datasets that have been deposited in approved data centres and awarded DOIs. The journal will also accept articles on data services, and articles which support and inform data publishing best practices.
Data is at the heart of science and scientific endeavour. The curation of data and the science associated with it is as important as ever in our understanding of the changing earth system and thereby enabling us to make future predictions. Geoscience Data Journal is working with recognised Data Centres across the globe to develop the future strategy for data publication, the recognition of the value of data and the communication and exploitation of data to the wider science and stakeholder communities.