Maria Helena Franciscatto, Luis Carlos Erpen de Bona, Celio Trois, Marcos Didonet Del FabroFabro, João Carlos Damasceno Lima
{"title":"Situational Data Integration in Question Answering systems: a survey over two decades","authors":"Maria Helena Franciscatto, Luis Carlos Erpen de Bona, Celio Trois, Marcos Didonet Del FabroFabro, João Carlos Damasceno Lima","doi":"10.1007/s10115-024-02136-0","DOIUrl":null,"url":null,"abstract":"<p>Question Answering (QA) systems provide accurate answers to questions; however, they lack the ability to consolidate data from multiple sources, making it difficult to manage complex questions that could be answered with additional data retrieved and integrated on the fly. This integration is inherent to Situational Data Integration (SDI) approaches that deal with dynamic requirements of ad hoc queries that neither traditional database management systems, nor search engines are effective in providing an answer. Thus, if QA systems include SDI characteristics, they could be able to return validated and immediate information for supporting users decisions. For this reason, we surveyed QA-based systems, assessing their capabilities to support SDI features, i.e., <i>Ad hoc Data Retrieval, Data Management,</i> and <i>Timely Decision Support</i>. We also identified patterns concerning these features in the surveyed studies, highlighting them in a timeline that shows the SDI evolution in the QA domain. To the best of your knowledge, this study is precursor in the joint analysis of SDI and QA, showing a combination that can favor the way systems support users. Our analyses show that most of SDI features are rarely addressed in QA systems, and based on that, we discuss directions for further research.\n</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"175 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02136-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Question Answering (QA) systems provide accurate answers to questions; however, they lack the ability to consolidate data from multiple sources, making it difficult to manage complex questions that could be answered with additional data retrieved and integrated on the fly. This integration is inherent to Situational Data Integration (SDI) approaches that deal with dynamic requirements of ad hoc queries that neither traditional database management systems, nor search engines are effective in providing an answer. Thus, if QA systems include SDI characteristics, they could be able to return validated and immediate information for supporting users decisions. For this reason, we surveyed QA-based systems, assessing their capabilities to support SDI features, i.e., Ad hoc Data Retrieval, Data Management, and Timely Decision Support. We also identified patterns concerning these features in the surveyed studies, highlighting them in a timeline that shows the SDI evolution in the QA domain. To the best of your knowledge, this study is precursor in the joint analysis of SDI and QA, showing a combination that can favor the way systems support users. Our analyses show that most of SDI features are rarely addressed in QA systems, and based on that, we discuss directions for further research.
期刊介绍:
Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.