{"title":"Latent side-information dynamic augmentation for incremental recommendation","authors":"Jing Zhang, Jin Shi, Jingsheng Duan, Yonggong Ren","doi":"10.1007/s10115-024-02165-9","DOIUrl":null,"url":null,"abstract":"<p>The incremental recommendation involves updating existing models by extracting information from interaction data at current time-step, with the aim of maintaining model accuracy while addressing limitations including parameter dependencies and inefficient training. However, real-time user interaction data is often afflicted by substantial noise and invalid samples, presenting the following key challenges for incremental model updating: (1) how to effectively extract valuable new knowledge from interaction data at the current time-step to ensure model accuracy and timeliness, and (2) how to safeguard against the catastrophic forgetting of long-term stable preference information, thus preserving the model’s sensitivity during cold-starts. In response to these challenges, we propose the Incremental Recommendation with Stable Latent Side-information Updating (SIIFR). This model employs a side-information augmenter to extract valuable latent side-information from user interaction behavior at time-step <i>T</i>, thereby sidestepping the interference caused by noisy interaction data and acquiring stable user preference. Moreover, the model utilizes rough interaction data at time-step <span>\\(T+1\\)</span>, in conjunction with existing side-information enhancements to achieve incremental updates of latent preferences, thereby ensuring the model’s efficacy during cold-start. Furthermore, SIIFR leverages the change rate in user latent side-information to mitigate catastrophic forgetting that results in the loss of long-term stable preference information. The effectiveness of the proposed model is validated and compared against existing models using four popular incremental datasets. The model code can be achieved at: https://github.com/LNNU-computer-research-526/FR-sii.</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"245 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02165-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The incremental recommendation involves updating existing models by extracting information from interaction data at current time-step, with the aim of maintaining model accuracy while addressing limitations including parameter dependencies and inefficient training. However, real-time user interaction data is often afflicted by substantial noise and invalid samples, presenting the following key challenges for incremental model updating: (1) how to effectively extract valuable new knowledge from interaction data at the current time-step to ensure model accuracy and timeliness, and (2) how to safeguard against the catastrophic forgetting of long-term stable preference information, thus preserving the model’s sensitivity during cold-starts. In response to these challenges, we propose the Incremental Recommendation with Stable Latent Side-information Updating (SIIFR). This model employs a side-information augmenter to extract valuable latent side-information from user interaction behavior at time-step T, thereby sidestepping the interference caused by noisy interaction data and acquiring stable user preference. Moreover, the model utilizes rough interaction data at time-step \(T+1\), in conjunction with existing side-information enhancements to achieve incremental updates of latent preferences, thereby ensuring the model’s efficacy during cold-start. Furthermore, SIIFR leverages the change rate in user latent side-information to mitigate catastrophic forgetting that results in the loss of long-term stable preference information. The effectiveness of the proposed model is validated and compared against existing models using four popular incremental datasets. The model code can be achieved at: https://github.com/LNNU-computer-research-526/FR-sii.
期刊介绍:
Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.