{"title":"Large Amplitude Free Vibration of Elastically Restrained Tapered Beams Resting on Non-linear Elastic Foundation","authors":"Parviz Malekzadeh, Hashem Moradi","doi":"10.1007/s40997-024-00785-8","DOIUrl":null,"url":null,"abstract":"<p>Large amplitude vibrational characteristics of variable section thin beams with edge rotations restrained by elastic torsional springs and supported on a cubic non-linear elastic foundation are studied. The motion equations and the corresponding boundary conditions are derived by employing Green’s strain together with von Kármán geometric non-linearity assumptions. The derived equations are discretized in the spatial domain using the differential quadrature method. The reliability and accuracy of the method are assessed through a comparative analysis of various available methods for beams with different geometrical parameters and boundary conditions. The study investigates the impact of various parameters on the non-linear to linear frequency ratios (NLFRs) of doubly linear and parabolic tapered beams. It is found that for double-linear tapered beams, the first three frequency ratios approach maximum values and then decrease by increasing the truncation factors. For double-parabolic tapered beams, first and third frequency ratios have maximum values, while the second frequency ratio increases initially and then remains constant. In addition, the transverse elastic coefficients depend on the shearing layer coefficient, especially for the doubly linear tapered beams. Also, in most cases, the frequency ratios decrease by increasing the transverse elastic coefficients. However, for the great values of shear layer elastic constant, the first NLFR of beams with a double-linear taper increases as the transverse elastic constants increase.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-024-00785-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Large amplitude vibrational characteristics of variable section thin beams with edge rotations restrained by elastic torsional springs and supported on a cubic non-linear elastic foundation are studied. The motion equations and the corresponding boundary conditions are derived by employing Green’s strain together with von Kármán geometric non-linearity assumptions. The derived equations are discretized in the spatial domain using the differential quadrature method. The reliability and accuracy of the method are assessed through a comparative analysis of various available methods for beams with different geometrical parameters and boundary conditions. The study investigates the impact of various parameters on the non-linear to linear frequency ratios (NLFRs) of doubly linear and parabolic tapered beams. It is found that for double-linear tapered beams, the first three frequency ratios approach maximum values and then decrease by increasing the truncation factors. For double-parabolic tapered beams, first and third frequency ratios have maximum values, while the second frequency ratio increases initially and then remains constant. In addition, the transverse elastic coefficients depend on the shearing layer coefficient, especially for the doubly linear tapered beams. Also, in most cases, the frequency ratios decrease by increasing the transverse elastic coefficients. However, for the great values of shear layer elastic constant, the first NLFR of beams with a double-linear taper increases as the transverse elastic constants increase.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.