{"title":"Study on the Influence of Vertical Baffles on Liquid Sloshing Damping Effect in Vehicle Fuel Tank Under Resonance Conditions","authors":"Xudong Wu, Ren He","doi":"10.1007/s40997-024-00786-7","DOIUrl":null,"url":null,"abstract":"<p>The fuel sloshing in the vehicle fuel tank can cause adverse consequences, especially under resonance conditions, and the vertical baffle may efficiently restrain the fuel sloshing. The current work couples mesh motion and volume of fluid to investigate the effect of baffle height on the liquid sloshing damping effect at different filling levels under resonance conditions. The aim is to explore the optimal baffle height at different fuel filling levels. The results indicate that the best damping performance can be obtained when using baffles with the same height as the fluid height. To reduce the impact pressure on the tank walls, a baffle slightly higher than the free surface height should be used at low filling levels, and a baffle slightly lower than the free surface height should be used at medium filling levels. Compared with high filling level, the baffle is more effective in reducing the sloshing force and moment at low and medium filling levels. A new formula for calculating the energy damping ratio is proposed. At 20% fuel filling level, the energy damping ratio increases continuously as the baffle height increases, and reaches the maximum value of 85.31% when <i>h</i><sub><i>b</i></sub>/<i>h</i><sub><i>w</i></sub> = 1.2. At 50% and 80% fuel filling level, the damping ratio reaches the maximum when <i>h</i><sub><i>b</i></sub>/<i>h</i><sub><i>w</i></sub> = 1, which is 79.79% and 56.39% respectively. This study provides important theoretical support for the anti-sloshing design of a vehicle fuel tank.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-024-00786-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The fuel sloshing in the vehicle fuel tank can cause adverse consequences, especially under resonance conditions, and the vertical baffle may efficiently restrain the fuel sloshing. The current work couples mesh motion and volume of fluid to investigate the effect of baffle height on the liquid sloshing damping effect at different filling levels under resonance conditions. The aim is to explore the optimal baffle height at different fuel filling levels. The results indicate that the best damping performance can be obtained when using baffles with the same height as the fluid height. To reduce the impact pressure on the tank walls, a baffle slightly higher than the free surface height should be used at low filling levels, and a baffle slightly lower than the free surface height should be used at medium filling levels. Compared with high filling level, the baffle is more effective in reducing the sloshing force and moment at low and medium filling levels. A new formula for calculating the energy damping ratio is proposed. At 20% fuel filling level, the energy damping ratio increases continuously as the baffle height increases, and reaches the maximum value of 85.31% when hb/hw = 1.2. At 50% and 80% fuel filling level, the damping ratio reaches the maximum when hb/hw = 1, which is 79.79% and 56.39% respectively. This study provides important theoretical support for the anti-sloshing design of a vehicle fuel tank.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.