Online model adaptation in Monte Carlo tree search planning

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Maddalena Zuccotto, Edoardo Fusa, Alberto Castellini, Alessandro Farinelli
{"title":"Online model adaptation in Monte Carlo tree search planning","authors":"Maddalena Zuccotto, Edoardo Fusa, Alberto Castellini, Alessandro Farinelli","doi":"10.1007/s11081-024-09896-2","DOIUrl":null,"url":null,"abstract":"<p>We propose a model-based reinforcement learning method using Monte Carlo Tree Search planning. The approach assumes a black-box approximated model of the environment developed by an expert using any kind of modeling framework and it improves the model as new information from the environment is collected. This is crucial in real-world applications, since having a complete knowledge of complex environments is impractical. The expert’s model is first translated into a neural network and then it is updated periodically using data, i.e., state-action-next-state triplets, collected from the real environment. We propose three different methods to integrate data acquired from the environment with prior knowledge provided by the expert and we evaluate our approach on a domain concerning air quality and thermal comfort control in smart buildings. We compare the three proposed versions with standard Monte Carlo Tree Search planning using the expert’s model (without adaptation), Proximal Policy Optimization (a popular model-free DRL approach) and Stochastic Lower Bounds Optimization (a popular model-based DRL approach). Results show that our approach achieves the best results, outperforming all analyzed competitors.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11081-024-09896-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a model-based reinforcement learning method using Monte Carlo Tree Search planning. The approach assumes a black-box approximated model of the environment developed by an expert using any kind of modeling framework and it improves the model as new information from the environment is collected. This is crucial in real-world applications, since having a complete knowledge of complex environments is impractical. The expert’s model is first translated into a neural network and then it is updated periodically using data, i.e., state-action-next-state triplets, collected from the real environment. We propose three different methods to integrate data acquired from the environment with prior knowledge provided by the expert and we evaluate our approach on a domain concerning air quality and thermal comfort control in smart buildings. We compare the three proposed versions with standard Monte Carlo Tree Search planning using the expert’s model (without adaptation), Proximal Policy Optimization (a popular model-free DRL approach) and Stochastic Lower Bounds Optimization (a popular model-based DRL approach). Results show that our approach achieves the best results, outperforming all analyzed competitors.

Abstract Image

蒙特卡洛树搜索规划中的在线模型调整
我们提出了一种使用蒙特卡洛树搜索规划的基于模型的强化学习方法。该方法假定专家使用任何一种建模框架开发出一个黑箱环境近似模型,并在收集到新的环境信息后改进该模型。这在实际应用中至关重要,因为完全了解复杂环境是不切实际的。专家模型首先被转化为神经网络,然后利用从真实环境中收集到的数据(即状态-行动-下一状态三元组)对其进行定期更新。我们提出了三种不同的方法来整合从环境中获取的数据和专家提供的先验知识,并在智能建筑的空气质量和热舒适度控制领域对我们的方法进行了评估。我们将所提出的三种版本与使用专家模型的标准蒙特卡洛树搜索规划(无适应性)、近端策略优化(一种流行的无模型 DRL 方法)和随机下限优化(一种流行的基于模型的 DRL 方法)进行了比较。结果表明,我们的方法取得了最佳效果,优于所有分析过的竞争对手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信