Pólya-type estimates for the first Robin eigenvalue of elliptic operators

IF 0.5 4区 数学 Q3 MATHEMATICS
Francesco Della Pietra
{"title":"Pólya-type estimates for the first Robin eigenvalue of elliptic operators","authors":"Francesco Della Pietra","doi":"10.1007/s00013-024-02012-x","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to obtain optimal estimates for the first Robin eigenvalue of the anisotropic <i>p</i>-Laplace operator, namely: </p><div><div><span>$$\\begin{aligned} \\lambda _F(\\beta ,\\Omega )= \\min _{\\psi \\in W^{1,p}(\\Omega ){\\setminus }\\{0\\} } \\frac{\\displaystyle \\int _\\Omega F(\\nabla \\psi )^p dx +\\beta \\int _{\\partial \\Omega }|\\psi |^p F(\\nu _{\\Omega }) d{\\mathcal {H}}^{N-1} }{\\displaystyle \\int _\\Omega |\\psi |^p dx}, \\end{aligned}$$</span></div></div><p>where <span>\\(p\\in ]1,+\\infty [,\\)</span> <span>\\(\\Omega \\)</span> is a bounded, convex domain in <span>\\({\\mathbb {R}}^{N},\\)</span> <span>\\(\\nu _{\\Omega }\\)</span> is its Euclidean outward normal, <span>\\(\\beta \\)</span> is a real number, and <i>F</i> is a sufficiently smooth norm on <span>\\({\\mathbb {R}}^{N}.\\)</span> We show an upper bound for <span>\\(\\lambda _{F}(\\beta ,\\Omega )\\)</span> in terms of the first eigenvalue of a one-dimensional nonlinear problem, which depends on <span>\\(\\beta \\)</span> and on the volume and the anisotropic perimeter of <span>\\(\\Omega ,\\)</span> in the spirit of the classical estimates of Pólya (J Indian Math Soc (NS) 24:413–419, 1961) for the Euclidean Dirichlet Laplacian. We will also provide a lower bound for the torsional rigidity </p><div><div><span>$$\\begin{aligned} \\tau _p(\\beta ,\\Omega )^{p-1} = \\max _{\\begin{array}{c} \\psi \\in W^{1,p}(\\Omega ){\\setminus }\\{0\\} \\end{array}} \\dfrac{\\left( \\displaystyle \\int _\\Omega |\\psi | \\, dx\\right) ^p}{\\displaystyle \\int _\\Omega F(\\nabla \\psi )^p dx+\\beta \\int _{\\partial \\Omega }|\\psi |^p F(\\nu _{\\Omega }) d{\\mathcal {H}}^{N-1} } \\end{aligned}$$</span></div></div><p>when <span>\\(\\beta &gt;0.\\)</span> The obtained results are new also in the case of the classical Euclidean Laplacian.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-02012-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02012-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to obtain optimal estimates for the first Robin eigenvalue of the anisotropic p-Laplace operator, namely:

$$\begin{aligned} \lambda _F(\beta ,\Omega )= \min _{\psi \in W^{1,p}(\Omega ){\setminus }\{0\} } \frac{\displaystyle \int _\Omega F(\nabla \psi )^p dx +\beta \int _{\partial \Omega }|\psi |^p F(\nu _{\Omega }) d{\mathcal {H}}^{N-1} }{\displaystyle \int _\Omega |\psi |^p dx}, \end{aligned}$$

where \(p\in ]1,+\infty [,\) \(\Omega \) is a bounded, convex domain in \({\mathbb {R}}^{N},\) \(\nu _{\Omega }\) is its Euclidean outward normal, \(\beta \) is a real number, and F is a sufficiently smooth norm on \({\mathbb {R}}^{N}.\) We show an upper bound for \(\lambda _{F}(\beta ,\Omega )\) in terms of the first eigenvalue of a one-dimensional nonlinear problem, which depends on \(\beta \) and on the volume and the anisotropic perimeter of \(\Omega ,\) in the spirit of the classical estimates of Pólya (J Indian Math Soc (NS) 24:413–419, 1961) for the Euclidean Dirichlet Laplacian. We will also provide a lower bound for the torsional rigidity

$$\begin{aligned} \tau _p(\beta ,\Omega )^{p-1} = \max _{\begin{array}{c} \psi \in W^{1,p}(\Omega ){\setminus }\{0\} \end{array}} \dfrac{\left( \displaystyle \int _\Omega |\psi | \, dx\right) ^p}{\displaystyle \int _\Omega F(\nabla \psi )^p dx+\beta \int _{\partial \Omega }|\psi |^p F(\nu _{\Omega }) d{\mathcal {H}}^{N-1} } \end{aligned}$$

when \(\beta >0.\) The obtained results are new also in the case of the classical Euclidean Laplacian.

椭圆算子第一个罗宾特征值的波利亚型估计值
本文的目的是获得各向异性p-拉普拉斯算子的第一个罗宾特征值的最优估计值,即: $$\begin{aligned}\lambda _F(\beta ,\Omega )= \min _{\psi \in W^{1,p}(\Omega ){\setminus }\{0\} }}\frac{displaystyle \int _\Omega F(\nabla \psi )^p dx +\beta \int _{partial \Omega }|\psi |^p F(\nu _\{Omega }) d{mathcal {H}}^{N-1} }{displaystyle \int _\Omega |\psi |^p dx}、\end{aligned}$$where \(p\in ]1、+\是它的欧几里得外向法线,(beta)是实数,F是{\mathbb {R}^{N} 上足够平滑的法线。\我们用一维非线性问题的第一个特征值来表示\(\lambda _{F}(\beta ,\Omega )\)的上界,这个特征值取决于\(\beta \)以及\(\Omega ,\)的体积和各向异性周长,其精神是波利亚(J Indian Math Soc (NS) 24:413-419, 1961)对欧几里得-狄利克特-拉普拉奇的经典估计。我们还将提供扭转刚度的下限 $$\begin{aligned}\tau _p(\beta ,\Omega )^{p-1} = \max _{begin{array}{c}\psi \in W^{1,p}(\Omega ){\setminus }\{0\}\end{array}\dfrac(left(displaystyle \int _\Omega |\psi | \,dx\right )^p}{displaystyle \int _\Omega F(\nabla \psi )^p dx+\beta \int _{partial \Omega }||\psi |^p F(\nu _{\Omega }) d{mathcal {H}}^{N-1} }\end{aligned}$$when \(\beta >0.\) 所得到的结果在经典欧几里得拉普拉奇的情况下也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信