Dovgoshey–Hariri–Vuorinen’s metric and Gromov hyperbolicity

IF 0.5 4区 数学 Q3 MATHEMATICS
Qingshan Zhou, Zhoucheng Zheng, Saminathan Ponnusamy, Tiantian Guan
{"title":"Dovgoshey–Hariri–Vuorinen’s metric and Gromov hyperbolicity","authors":"Qingshan Zhou,&nbsp;Zhoucheng Zheng,&nbsp;Saminathan Ponnusamy,&nbsp;Tiantian Guan","doi":"10.1007/s00013-024-02021-w","DOIUrl":null,"url":null,"abstract":"<div><p>In 2016, Dovgoshey et al. introduced a metric <span>\\(\\zeta \\)</span> on proper subdomains <i>G</i> of Euclidean spaces <span>\\(\\mathbb {R}^k\\)</span> and studied its connection with several hyperbolic type metrics. In this paper, we consider the Gromov hyperbolicity of <span>\\((G,\\zeta )\\)</span> and show that there is a natural quasisymmetric homeomorphism between the Euclidean boundary of <i>G</i> and the Gromov boundary of <span>\\((G,\\zeta )\\)</span> equipped with a visual metric.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02021-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In 2016, Dovgoshey et al. introduced a metric \(\zeta \) on proper subdomains G of Euclidean spaces \(\mathbb {R}^k\) and studied its connection with several hyperbolic type metrics. In this paper, we consider the Gromov hyperbolicity of \((G,\zeta )\) and show that there is a natural quasisymmetric homeomorphism between the Euclidean boundary of G and the Gromov boundary of \((G,\zeta )\) equipped with a visual metric.

多夫戈舍伊-哈里里-武里宁度量和格罗莫夫双曲性
2016 年,Dovgoshey 等人引入了欧几里得空间 \(\mathbb {R}^k\) 的适当子域 G 上的度量 \(\zeta \),并研究了它与几种双曲型度量的联系。在本文中,我们考虑了\((G,\zeta )\)的格罗莫夫双曲性,并证明了在 G 的欧几里得边界和配有视觉度量的\((G,\zeta )\)的格罗莫夫边界之间存在一个自然的类对称同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信