A protrusive ordering of 5 points not witnessed by any finite multiset

IF 0.5 4区 数学 Q3 MATHEMATICS
Adrian Beker
{"title":"A protrusive ordering of 5 points not witnessed by any finite multiset","authors":"Adrian Beker","doi":"10.1007/s00013-024-02020-x","DOIUrl":null,"url":null,"abstract":"<div><p>Given a finite set of points <span>\\(C \\subseteq {\\mathbb {R}}^d\\)</span>, we say that an ordering of <i>C</i> is <i>protrusive</i> if every point lies outside the convex hull of the points preceding it. We give an example of a set <i>C</i> of 5 points in the Euclidean plane possessing a protrusive ordering that cannot be obtained by ranking the points of <i>C</i> according to the sum of their distances to a finite multiset of points. This answers a question of Alon, Defant, Kravitz, and Zhu.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02020-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a finite set of points \(C \subseteq {\mathbb {R}}^d\), we say that an ordering of C is protrusive if every point lies outside the convex hull of the points preceding it. We give an example of a set C of 5 points in the Euclidean plane possessing a protrusive ordering that cannot be obtained by ranking the points of C according to the sum of their distances to a finite multiset of points. This answers a question of Alon, Defant, Kravitz, and Zhu.

任何有限多集都无法见证的 5 点突出排序
给定一个有限点集 C(C 的子集{\mathbb {R}}^d\ ),如果每个点都位于它前面的点的凸壳之外,我们就说 C 的排序是突出的。我们举例说明,欧几里得平面上一个由 5 个点组成的集合 C 拥有一个突出排序,而这个突出排序无法通过将 C 中的点按照它们到一个有限多点集合的距离之和进行排序来获得。这回答了 Alon、Defant、Kravitz 和 Zhu 的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信