Counterexamples to maximal regularity for operators in divergence form

IF 0.5 4区 数学 Q3 MATHEMATICS
Sebastian Bechtel, Connor Mooney, Mark Veraar
{"title":"Counterexamples to maximal regularity for operators in divergence form","authors":"Sebastian Bechtel,&nbsp;Connor Mooney,&nbsp;Mark Veraar","doi":"10.1007/s00013-024-02014-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present counterexamples to maximal <span>\\(L^p\\)</span>-regularity for a parabolic PDE. The example is a second-order operator in divergence form with space and time-dependent coefficients. It is well-known from Lions’ theory that such operators admit maximal <span>\\(L^2\\)</span>-regularity on <span>\\(H^{-1}\\)</span> under a coercivity condition on the coefficients, and without any regularity conditions in time and space. We show that in general one cannot expect maximal <span>\\(L^p\\)</span>-regularity on <span>\\(H^{-1}(\\mathbb {R}^d)\\)</span> or <span>\\(L^2\\)</span>-regularity on <span>\\(L^2(\\mathbb {R}^d)\\)</span>.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-02014-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02014-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present counterexamples to maximal \(L^p\)-regularity for a parabolic PDE. The example is a second-order operator in divergence form with space and time-dependent coefficients. It is well-known from Lions’ theory that such operators admit maximal \(L^2\)-regularity on \(H^{-1}\) under a coercivity condition on the coefficients, and without any regularity conditions in time and space. We show that in general one cannot expect maximal \(L^p\)-regularity on \(H^{-1}(\mathbb {R}^d)\) or \(L^2\)-regularity on \(L^2(\mathbb {R}^d)\).

发散形式算子最大正则性的反例
在本文中,我们提出了抛物线 PDE 最大 \(L^p\)-regularity 的反例。例子是一个具有空间和时间相关系数的发散形式的二阶算子。众所周知,Lions 理论认为在系数的协迫性条件下,此类算子在 \(H^{-1}\)上具有最大 \(L^2\)-正则性,而不需要任何时间和空间上的正则性条件。我们证明,一般来说,我们不能期望在\(H^{-1}(\mathbb {R}^d)\)上具有最大的\(L^p\)-正则性,也不能期望在\(L^2(\mathbb {R}^d)\)上具有\(L^2\)-正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信