Arithmetic fundamental lemma for the spherical Hecke algebra

IF 0.5 4区 数学 Q3 MATHEMATICS
Chao Li, Michael Rapoport, Wei Zhang
{"title":"Arithmetic fundamental lemma for the spherical Hecke algebra","authors":"Chao Li, Michael Rapoport, Wei Zhang","doi":"10.1007/s00229-024-01572-0","DOIUrl":null,"url":null,"abstract":"<p>We define Hecke correspondences and Hecke operators on unitary RZ spaces and study their basic geometric properties, including a commutativity conjecture on Hecke operators. Then we formulate the arithmetic fundamental lemma conjecture for the spherical Hecke algebra. We also formulate a conjecture on the abundance of spherical Hecke functions with identically vanishing first derivative of orbital integrals. We prove these conjectures for the case <span>\\(\\textrm{U} (1)\\times \\textrm{U} (2)\\)</span>.\n</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"13 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01572-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We define Hecke correspondences and Hecke operators on unitary RZ spaces and study their basic geometric properties, including a commutativity conjecture on Hecke operators. Then we formulate the arithmetic fundamental lemma conjecture for the spherical Hecke algebra. We also formulate a conjecture on the abundance of spherical Hecke functions with identically vanishing first derivative of orbital integrals. We prove these conjectures for the case \(\textrm{U} (1)\times \textrm{U} (2)\).

球面赫克代数的算术基本定理
我们定义了单元 RZ 空间上的赫克对应关系和赫克算子,并研究了它们的基本几何性质,包括赫克算子的换元猜想。然后,我们提出了球面 Hecke 代数的算术基本两难猜想。我们还提出了一个关于轨道积分一阶导数同位消失的球面 Hecke 函数丰度的猜想。我们证明了在(textrm{U} (1)\times \textrm{U} (2)\)情况下的这些猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manuscripta Mathematica
Manuscripta Mathematica 数学-数学
CiteScore
1.40
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信