Chui-yun Tang, Juan Zhong, Ying Lyu, Jun Yao, Mu-jiang Li, Xing-yu Liu
{"title":"Phosphorus additives driving the bacterial community succession during Bacillus spp. remediation of the uranium tailings","authors":"Chui-yun Tang, Juan Zhong, Ying Lyu, Jun Yao, Mu-jiang Li, Xing-yu Liu","doi":"10.1007/s11771-024-5628-1","DOIUrl":null,"url":null,"abstract":"<p>Uranium tailings discharged into uranium tailings ponds could generate environmental pollution issues. Microbial-induced phosphate mineralization could reduce the release of uranium, in turn effectively managing pollution. However, it is unclear that how the phosphorus additives affect the microbial structure of uranium tailings under biomineralization. Herein, we evaluate the microbial community succession during <i>Bacillus</i> spp. remediation of uranium tailings, when adding hydroxyapatite (HS) and <i>β</i>-glycerol phosphate pentahydrate (GP). The results show that phosphorus additives effectively changed pH and uranium leaching concentration, significantly increased bacterial richness, and promoted microbial community succession, whilst promoting actinobacteria to Firmicutes and Proteobacteria populations. The two additives influenced the bacterial community succession patterns differently, with GP eliciting the greater enhancement. Additionally, GP enhanced the growth of core species and recognized the phylum firmicutes as a crucial taxon. The abundance of <i>Bacillus, Pseudomonas, Desulfotomaculum</i>, and <i>Clostridium_sensu_stricto</i>_12 was higher in GP treatments, indicating the substantial roles played by these genera in the microbial community. The results provide evidence of the involvement of the two phosphorus additives in bioremediation and bacterial community perturbations and thus provide new insights into the biomineralization technologies for uranium tailings.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Central South University","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11771-024-5628-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Uranium tailings discharged into uranium tailings ponds could generate environmental pollution issues. Microbial-induced phosphate mineralization could reduce the release of uranium, in turn effectively managing pollution. However, it is unclear that how the phosphorus additives affect the microbial structure of uranium tailings under biomineralization. Herein, we evaluate the microbial community succession during Bacillus spp. remediation of uranium tailings, when adding hydroxyapatite (HS) and β-glycerol phosphate pentahydrate (GP). The results show that phosphorus additives effectively changed pH and uranium leaching concentration, significantly increased bacterial richness, and promoted microbial community succession, whilst promoting actinobacteria to Firmicutes and Proteobacteria populations. The two additives influenced the bacterial community succession patterns differently, with GP eliciting the greater enhancement. Additionally, GP enhanced the growth of core species and recognized the phylum firmicutes as a crucial taxon. The abundance of Bacillus, Pseudomonas, Desulfotomaculum, and Clostridium_sensu_stricto_12 was higher in GP treatments, indicating the substantial roles played by these genera in the microbial community. The results provide evidence of the involvement of the two phosphorus additives in bioremediation and bacterial community perturbations and thus provide new insights into the biomineralization technologies for uranium tailings.
期刊介绍:
Focuses on the latest research achievements in mining and metallurgy
Coverage spans across materials science and engineering, metallurgical science and engineering, mineral processing, geology and mining, chemical engineering, and mechanical, electronic and information engineering