{"title":"Chromium stabilization by polysulfide supported nZVI@biochar in contaminated soil: Cr bioavailability and stabilization mechanism","authors":"Jin-song Chen, Xin Wang, Xin-yao Yan, Xiao-ke Wang, Hui Ma, Sheng-yan Pu","doi":"10.1007/s11771-024-5599-2","DOIUrl":null,"url":null,"abstract":"<p>Chromium (Cr) contamination in soil is one of the most severe environmental issues, which poses significant health hazards to humans. In this study, the stabilization mechanism of Cr-contaminated soil by polysulfide-supported nZVI@biochar (PS-nZVI@BC) and the resultant bioavailability of Cr was studied. The addition of PS-nZVI@BC is capable of decreasing 92.0% of leachable Cr(VI) in the soil after 30 days of treatment. According to sequential extraction analysis, the exchangeable Cr in soil decreased drastically from 20.8% to 4.0% after PS-nZVI@BC addition, which was mostly converted to Fe-Mn oxided and organic matter-bound forms. The stabilization mechanisms include electrostatic adsorption, redox reaction, surface complexation, and precipitation. The soil fertility of Cr-contaminated soil was effectively improved by PS-nZVI@BC, and the toxicity of Cr in soil to maize seedlings was reduced. These results demonstrated the great potential of utilizing PS-nZVI@BC for the remediation of Cr-contaminated soils.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"94 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Central South University","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11771-024-5599-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Chromium (Cr) contamination in soil is one of the most severe environmental issues, which poses significant health hazards to humans. In this study, the stabilization mechanism of Cr-contaminated soil by polysulfide-supported nZVI@biochar (PS-nZVI@BC) and the resultant bioavailability of Cr was studied. The addition of PS-nZVI@BC is capable of decreasing 92.0% of leachable Cr(VI) in the soil after 30 days of treatment. According to sequential extraction analysis, the exchangeable Cr in soil decreased drastically from 20.8% to 4.0% after PS-nZVI@BC addition, which was mostly converted to Fe-Mn oxided and organic matter-bound forms. The stabilization mechanisms include electrostatic adsorption, redox reaction, surface complexation, and precipitation. The soil fertility of Cr-contaminated soil was effectively improved by PS-nZVI@BC, and the toxicity of Cr in soil to maize seedlings was reduced. These results demonstrated the great potential of utilizing PS-nZVI@BC for the remediation of Cr-contaminated soils.
期刊介绍:
Focuses on the latest research achievements in mining and metallurgy
Coverage spans across materials science and engineering, metallurgical science and engineering, mineral processing, geology and mining, chemical engineering, and mechanical, electronic and information engineering