Testing serial dependence or cross dependence for time series with underreporting

IF 2.4 2区 数学 Q2 BIOLOGY
Biometrika Pub Date : 2024-06-22 DOI:10.1093/biomet/asae027
Keyao Wei, Lengyang Wang, Yingcun Xia
{"title":"Testing serial dependence or cross dependence for time series with underreporting","authors":"Keyao Wei, Lengyang Wang, Yingcun Xia","doi":"10.1093/biomet/asae027","DOIUrl":null,"url":null,"abstract":"In practice, it is common for collected data to be underreported, which is particularly prevalent in fields such as social sciences, ecology and epidemiology. Drawing inferences from such data using conventional statistical methods can lead to incorrect conclusions. In this paper, we study tests for serial or cross dependence in time series data that are subject to underreporting. We introduce new test statistics, develop corresponding group-of-blocks bootstrap techniques, and establish their consistency. The methods are shown to be efficient by simulation and are used to identify key factors responsible for the spread of dengue fever and the occurrence of cardiovascular disease.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"197 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asae027","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In practice, it is common for collected data to be underreported, which is particularly prevalent in fields such as social sciences, ecology and epidemiology. Drawing inferences from such data using conventional statistical methods can lead to incorrect conclusions. In this paper, we study tests for serial or cross dependence in time series data that are subject to underreporting. We introduce new test statistics, develop corresponding group-of-blocks bootstrap techniques, and establish their consistency. The methods are shown to be efficient by simulation and are used to identify key factors responsible for the spread of dengue fever and the occurrence of cardiovascular disease.
测试有漏报的时间序列的序列依赖性或交叉依赖性
在实践中,收集到的数据被漏报是很常见的现象,这在社会科学、生态学和流行病学等领域尤为普遍。使用传统统计方法对此类数据进行推断可能会得出错误的结论。在本文中,我们研究了受漏报影响的时间序列数据中的序列或交叉依赖性检验。我们引入了新的检验统计量,开发了相应的块组引导技术,并确定了它们的一致性。通过模拟证明了这些方法的有效性,并将其用于确定登革热传播和心血管疾病发生的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信