Characteristics of elastic wave propagation and anomalous Doppler effect in the periodic structure of floating slab track

IF 3.7 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Xin-hao Zhang, Cai-you Zhao, Qing-min Hui, Ming-jing Geng, Ming-jing Yue, Qiang Yi, Tao Lu, Ping Wang
{"title":"Characteristics of elastic wave propagation and anomalous Doppler effect in the periodic structure of floating slab track","authors":"Xin-hao Zhang, Cai-you Zhao, Qing-min Hui, Ming-jing Geng, Ming-jing Yue, Qiang Yi, Tao Lu, Ping Wang","doi":"10.1007/s11771-024-5644-1","DOIUrl":null,"url":null,"abstract":"<p>Floating slab track is widely used in urban rail transit because of its proven vibration attenuation and isolation performance. To investigate the elastic wave propagation in floating slab structure, the characteristic equation for wave dispersion is obtained using generalized plane wave expansion. Double periodicities from unit slab and fastener spacing are considered simultaneously. The complex dispersion curve of the infinite periodic floating slab track is obtained. Eight band-gaps are found to exist in the range from 0 to 300 Hz, and the corresponding theoretical analysis on wave dispersion is provided. An impact test was conducted, which verifies the band-gaps blocking effect on elastic wave propagation. Based on the wave-mode properties, it is found that the band-gap formation mechanism of track structure with double periodicities is different from track structure with a single periodicity, i.e., the localized Bragg scattering or localized resonance modes cannot prevent the propagation of coupled elastic waves in the case of double periodicities. The results in the frequency-wave number domain demonstrate that anomalous Doppler effect occurs in the stopband range and the normal Doppler effect occurs in the passband range.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"48 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Central South University","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11771-024-5644-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Floating slab track is widely used in urban rail transit because of its proven vibration attenuation and isolation performance. To investigate the elastic wave propagation in floating slab structure, the characteristic equation for wave dispersion is obtained using generalized plane wave expansion. Double periodicities from unit slab and fastener spacing are considered simultaneously. The complex dispersion curve of the infinite periodic floating slab track is obtained. Eight band-gaps are found to exist in the range from 0 to 300 Hz, and the corresponding theoretical analysis on wave dispersion is provided. An impact test was conducted, which verifies the band-gaps blocking effect on elastic wave propagation. Based on the wave-mode properties, it is found that the band-gap formation mechanism of track structure with double periodicities is different from track structure with a single periodicity, i.e., the localized Bragg scattering or localized resonance modes cannot prevent the propagation of coupled elastic waves in the case of double periodicities. The results in the frequency-wave number domain demonstrate that anomalous Doppler effect occurs in the stopband range and the normal Doppler effect occurs in the passband range.

浮动板轨道周期结构中的弹性波传播特性和反常多普勒效应
浮置板轨道具有良好的减振和隔振性能,因此被广泛应用于城市轨道交通。为了研究浮置板结构中的弹性波传播,利用广义平面波展开求得了波扩散的特征方程。同时考虑了单位板和紧固件间距的双周期性。得到了无限周期浮置板轨道的复频散曲线。发现在 0 至 300 Hz 范围内存在八个带隙,并提供了相应的波频散理论分析。还进行了冲击试验,验证了带隙对弹性波传播的阻滞作用。根据波模特性发现,双周期轨道结构的带隙形成机制不同于单周期轨道结构,即在双周期情况下,局部布拉格散射或局部共振模无法阻止耦合弹性波的传播。频率-波数域的结果表明,异常多普勒效应发生在阻带范围内,而正常多普勒效应发生在通带范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Central South University
Journal of Central South University METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.10
自引率
6.80%
发文量
242
审稿时长
2-4 weeks
期刊介绍: Focuses on the latest research achievements in mining and metallurgy Coverage spans across materials science and engineering, metallurgical science and engineering, mineral processing, geology and mining, chemical engineering, and mechanical, electronic and information engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信