M. Ángeles Martín-Lara, R. Moreno, G. Blázquez, M. Calero
{"title":"Hydrogen Production Came from Catalytic Reforming of Volatiles Generated by Waste-Plastic Pyrolysis Over Sepiolite-Based Catalysts","authors":"M. Ángeles Martín-Lara, R. Moreno, G. Blázquez, M. Calero","doi":"10.1007/s11244-024-01981-1","DOIUrl":null,"url":null,"abstract":"<p>Several sepiolite-based catalysts have been prepared and investigated for pyrolytic H<sub>2</sub> production from a post-consumer mixture of residual plastics. The experimental installation involved a two-stage reaction system: first, the plastic mixture was thermally pyrolyzed at 500 ºC; then, the generated volatiles were reformed by increasing the temperature to 700 ºC and 800 ºC in the presence of the sepiolite-based catalysts. The real mixture came from non-separate waste collection streams and contained post-consumer polypropylene (rigid and film), expanded polystyrene, high-impact polystyrene, and polyethylene. The results demonstrated that the two-stage pyrolysis technique using sepiolite-based catalysts successfully generated hydrogen. The effects of the type of polymer, temperature, and catalyst were analyzed. The higher production of hydrogen (27.2 mmol H<sub>2</sub>/g) was obtained when the mixture of plastic waste was pyrolyzed and then the volatiles were reformed at 800 °C with the SN5-800 12 nickel-modified sepiolite. Additionally, the generation of hydrogen also increased after acidifying natural sepiolite (from 18.2 mmol H<sub>2</sub>/g plastic for natural sepiolite to 26.4 mmol H<sub>2</sub>/g for acidified sepiolite at 800 ºC with a plastic/catalyst ratio of 1:2). Finally, the carbon deposited in the catalysts was examined. Approximately, only 20% of the carbon that was deposited in the sepiolite-based catalysts was filamentous carbon; the majority was amorphous carbon.</p><p>The results have therefore shown that it is possible to obtain a hydrogen-rich gas from the reforming of the pyrolysis vapors of a mixture of plastic waste using a low-cost catalyst based on nickel-modified sepiolite.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"49 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11244-024-01981-1","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Several sepiolite-based catalysts have been prepared and investigated for pyrolytic H2 production from a post-consumer mixture of residual plastics. The experimental installation involved a two-stage reaction system: first, the plastic mixture was thermally pyrolyzed at 500 ºC; then, the generated volatiles were reformed by increasing the temperature to 700 ºC and 800 ºC in the presence of the sepiolite-based catalysts. The real mixture came from non-separate waste collection streams and contained post-consumer polypropylene (rigid and film), expanded polystyrene, high-impact polystyrene, and polyethylene. The results demonstrated that the two-stage pyrolysis technique using sepiolite-based catalysts successfully generated hydrogen. The effects of the type of polymer, temperature, and catalyst were analyzed. The higher production of hydrogen (27.2 mmol H2/g) was obtained when the mixture of plastic waste was pyrolyzed and then the volatiles were reformed at 800 °C with the SN5-800 12 nickel-modified sepiolite. Additionally, the generation of hydrogen also increased after acidifying natural sepiolite (from 18.2 mmol H2/g plastic for natural sepiolite to 26.4 mmol H2/g for acidified sepiolite at 800 ºC with a plastic/catalyst ratio of 1:2). Finally, the carbon deposited in the catalysts was examined. Approximately, only 20% of the carbon that was deposited in the sepiolite-based catalysts was filamentous carbon; the majority was amorphous carbon.
The results have therefore shown that it is possible to obtain a hydrogen-rich gas from the reforming of the pyrolysis vapors of a mixture of plastic waste using a low-cost catalyst based on nickel-modified sepiolite.
期刊介绍:
Topics in Catalysis publishes topical collections in all fields of catalysis which are composed only of invited articles from leading authors. The journal documents today’s emerging and critical trends in all branches of catalysis. Each themed issue is organized by renowned Guest Editors in collaboration with the Editors-in-Chief. Proposals for new topics are welcome and should be submitted directly to the Editors-in-Chief.
The publication of individual uninvited original research articles can be sent to our sister journal Catalysis Letters. This journal aims for rapid publication of high-impact original research articles in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.