Online t-SNE for single-cell RNA-seq

Hui Ma, Kai Chen
{"title":"Online t-SNE for single-cell RNA-seq","authors":"Hui Ma, Kai Chen","doi":"arxiv-2406.14842","DOIUrl":null,"url":null,"abstract":"Due to the sequential sample arrival, changing experiment conditions, and\nevolution of knowledge, the demand to continually visualize evolving structures\nof sequential and diverse single-cell RNA-sequencing (scRNA-seq) data becomes\nindispensable. However, as one of the state-of-the-art visualization and\nanalysis methods for scRNA-seq, t-distributed stochastic neighbor embedding\n(t-SNE) merely visualizes static scRNA-seq data offline and fails to meet the\ndemand well. To address these challenges, we introduce online t-SNE to\nseamlessly integrate sequential scRNA-seq data. Online t-SNE achieves this by\nleveraging the embedding space of old samples, exploring the embedding space of\nnew samples, and aligning the two embedding spaces on the fly. Consequently,\nonline t-SNE dramatically enables the continual discovery of new structures and\nhigh-quality visualization of new scRNA-seq data without retraining from\nscratch. We showcase the formidable visualization capabilities of online t-SNE\nacross diverse sequential scRNA-seq datasets.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.14842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the sequential sample arrival, changing experiment conditions, and evolution of knowledge, the demand to continually visualize evolving structures of sequential and diverse single-cell RNA-sequencing (scRNA-seq) data becomes indispensable. However, as one of the state-of-the-art visualization and analysis methods for scRNA-seq, t-distributed stochastic neighbor embedding (t-SNE) merely visualizes static scRNA-seq data offline and fails to meet the demand well. To address these challenges, we introduce online t-SNE to seamlessly integrate sequential scRNA-seq data. Online t-SNE achieves this by leveraging the embedding space of old samples, exploring the embedding space of new samples, and aligning the two embedding spaces on the fly. Consequently, online t-SNE dramatically enables the continual discovery of new structures and high-quality visualization of new scRNA-seq data without retraining from scratch. We showcase the formidable visualization capabilities of online t-SNE across diverse sequential scRNA-seq datasets.
用于单细胞 RNA-seq 的在线 t-SNE
由于样本的连续到达、实验条件的变化以及知识的发展,对连续、多样的单细胞RNA测序(scRNA-sequencing,scRNA-seq)数据不断演化的结构进行可视化的需求变得不可或缺。然而,作为最先进的 scRNA-seq 可视化和分析方法之一,t-分布随机邻域嵌入(t-SNE)只能离线可视化静态 scRNA-seq 数据,不能很好地满足需求。为了应对这些挑战,我们引入了在线 t-SNE,以无缝整合连续的 scRNA-seq 数据。在线 t-SNE 通过充分利用旧样本的嵌入空间,探索新样本的嵌入空间,并对这两个嵌入空间进行实时对齐来实现这一目标。因此,在线 t-SNE 极大地促进了新结构的不断发现和新 scRNA-seq 数据的高质量可视化,而无需从头开始重新训练。我们展示了在线 t-SNE 跨各种连续 scRNA-seq 数据集的强大可视化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信