Tero Heinonen, Mari Selkimäki, Parvez Rana, Timo Tokola
{"title":"How can optimized forest management plan regulate noise levels from wind turbines?","authors":"Tero Heinonen, Mari Selkimäki, Parvez Rana, Timo Tokola","doi":"10.1007/s10342-024-01707-8","DOIUrl":null,"url":null,"abstract":"<p>Wind energy has emerged as one of the most economically viable renewable energy options in the transition towards a fossil-free society. In Finland, wind farms, consisting of several wind turbines, are commonly located in forested areas, prompting concerns about their potential audio-visual impacts. Despite this, research into how forests might mitigate the adverse effects of wind farms are limited. Forests can effectively serve as noise barrier, with their noise attenuation capacity varying based on the forest’s characteristics. Specifically, the attenuation level depends on the sound’s travel distance through the forest, as well as the size and density of trees. Our study findings indicate that forests can provide up to 10 dB of additional noise attenuation. This was achieved by integrating a forest structure-based model into forest planning calculations, aimed at mitigating noise pollution from wind turbines. Incorporating this noise model as a management objective significantly reduced noise levels in the pilot study area, outperforming traditional business-as-usual management strategies. Furthermore, adapting a combination of uneven-aged and even-aged forest management approaches resulted in more forested landscape, which was more effective in mitigating higher noise levels. Our results contribute important insights that, along with further research, can guide future forest planning and management towards enhanced sustainability.</p>","PeriodicalId":11996,"journal":{"name":"European Journal of Forest Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Forest Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10342-024-01707-8","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Wind energy has emerged as one of the most economically viable renewable energy options in the transition towards a fossil-free society. In Finland, wind farms, consisting of several wind turbines, are commonly located in forested areas, prompting concerns about their potential audio-visual impacts. Despite this, research into how forests might mitigate the adverse effects of wind farms are limited. Forests can effectively serve as noise barrier, with their noise attenuation capacity varying based on the forest’s characteristics. Specifically, the attenuation level depends on the sound’s travel distance through the forest, as well as the size and density of trees. Our study findings indicate that forests can provide up to 10 dB of additional noise attenuation. This was achieved by integrating a forest structure-based model into forest planning calculations, aimed at mitigating noise pollution from wind turbines. Incorporating this noise model as a management objective significantly reduced noise levels in the pilot study area, outperforming traditional business-as-usual management strategies. Furthermore, adapting a combination of uneven-aged and even-aged forest management approaches resulted in more forested landscape, which was more effective in mitigating higher noise levels. Our results contribute important insights that, along with further research, can guide future forest planning and management towards enhanced sustainability.
期刊介绍:
The European Journal of Forest Research focuses on publishing innovative results of empirical or model-oriented studies which contribute to the development of broad principles underlying forest ecosystems, their functions and services.
Papers which exclusively report methods, models, techniques or case studies are beyond the scope of the journal, while papers on studies at the molecular or cellular level will be considered where they address the relevance of their results to the understanding of ecosystem structure and function. Papers relating to forest operations and forest engineering will be considered if they are tailored within a forest ecosystem context.