Restricted baby Skyrme-Maxwell theory in a magnetic medium: BPS configurations and some properties

J. Andrade, R. Casana, E. da Hora, A. C. Santos
{"title":"Restricted baby Skyrme-Maxwell theory in a magnetic medium: BPS configurations and some properties","authors":"J. Andrade, R. Casana, E. da Hora, A. C. Santos","doi":"arxiv-2406.18357","DOIUrl":null,"url":null,"abstract":"We study the existence of BPS configurations in a restricted baby\nSkyrme-Maxwell enlarged via the inclusion of a nontrivial magnetic\npermeability. In order to attain such a goal, we use the\nBogomol'nyi-Prasad-Sommerfield prescription, which allows us to obtain the\nlower bound for the energy and the BPS equations whose [electrically neutral]\nsolutions saturate that bound. During the energy minimization procedure, we\nfind a differential constraint which involves the self-dual potential, the\nsuperpotential itself and also the magnetic permeability. In order to solve the\nBPS system, we focus our attention on those solutions with rotational symmetry.\nFor that, we fix the magnetic permeability and select two BPS potentials which\nexhibit a similar behavior near to the vacuum. We depict the resulting profiles\nand proceed to an analytical description of the properties of the BPS magnetic\nfield. Furthermore, we consider some essential aspects of our model, such as\nthe conditions for the overall existence of the BPS solutions, and how the\npermeability affects the magnetic flux. Finally, we present a family of exact\nBPS solutions.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"198 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.18357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the existence of BPS configurations in a restricted baby Skyrme-Maxwell enlarged via the inclusion of a nontrivial magnetic permeability. In order to attain such a goal, we use the Bogomol'nyi-Prasad-Sommerfield prescription, which allows us to obtain the lower bound for the energy and the BPS equations whose [electrically neutral] solutions saturate that bound. During the energy minimization procedure, we find a differential constraint which involves the self-dual potential, the superpotential itself and also the magnetic permeability. In order to solve the BPS system, we focus our attention on those solutions with rotational symmetry. For that, we fix the magnetic permeability and select two BPS potentials which exhibit a similar behavior near to the vacuum. We depict the resulting profiles and proceed to an analytical description of the properties of the BPS magnetic field. Furthermore, we consider some essential aspects of our model, such as the conditions for the overall existence of the BPS solutions, and how the permeability affects the magnetic flux. Finally, we present a family of exact BPS solutions.
磁性介质中的受限婴孩 Skyrme-Maxwell 理论:BPS构型和一些特性
我们研究了受限的babySkyrme-Maxwell中的BPS构型的存在性,该构型通过加入一个非rivial的磁导率而扩大。为了实现这一目标,我们使用了波戈莫尔尼-普拉萨德-索默菲尔德处方(Bogomol'nyi-Prasad-Sommerfield prescription),它允许我们获得能量的下限和 BPS 方程,其[电中性]解使该下限达到饱和。在能量最小化过程中,我们发现了一个微分约束条件,它涉及自双势、超势本身以及磁导率。为了求解 BPS 系统,我们将注意力集中在具有旋转对称性的解上。为此,我们固定了磁导率,并选择了两个在真空附近表现出相似行为的 BPS 势。我们描绘了由此产生的剖面,并进而对 BPS 磁场的特性进行了分析描述。此外,我们还考虑了模型的一些重要方面,如 BPS 解决方案的整体存在条件,以及渗透性如何影响磁通量。最后,我们提出了一系列精确的 BPS 解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信