Dynamics of multidimensional fundamental and vortex solitons in random media

Volodymyr M. Lashkin
{"title":"Dynamics of multidimensional fundamental and vortex solitons in random media","authors":"Volodymyr M. Lashkin","doi":"arxiv-2406.17939","DOIUrl":null,"url":null,"abstract":"We study the dynamics of fundamental and vortex solitons in the framework of\nthe nonlinear Schr\\\"{o}dinger equation with the spatial dimension $D\\geqslant\n2$ with a multiplicative random term depending on the time and space\ncoordinates. To this end, we develop a new technique for calculating the even\nmoments of the $N$th order. The proposed formalism does not use closure\nprocedures for the nonlinear term, as well as the smallness of the random term\nand the use of perturbation theory. The essential point is the quadratic form\nof the autocorrelation function of the random field and the special stochastic\nchange of variables. Using variational analysis to determine the field of\nstructures in the deterministic case, we analytically calculate a number of\nstatistical characteristics describing the dynamics of fundamental and vortex\nsolitons in random medium, such as the mean intensities, the variance of the\nintensity, the centroid and spread of the structures, the spatial mutual\ncoherence function etc. In particular, we show that, under the irreversible\naction of fluctuations, the solitons spread out, i.e., no collapse occurs.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.17939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the dynamics of fundamental and vortex solitons in the framework of the nonlinear Schr\"{o}dinger equation with the spatial dimension $D\geqslant 2$ with a multiplicative random term depending on the time and space coordinates. To this end, we develop a new technique for calculating the even moments of the $N$th order. The proposed formalism does not use closure procedures for the nonlinear term, as well as the smallness of the random term and the use of perturbation theory. The essential point is the quadratic form of the autocorrelation function of the random field and the special stochastic change of variables. Using variational analysis to determine the field of structures in the deterministic case, we analytically calculate a number of statistical characteristics describing the dynamics of fundamental and vortex solitons in random medium, such as the mean intensities, the variance of the intensity, the centroid and spread of the structures, the spatial mutual coherence function etc. In particular, we show that, under the irreversible action of fluctuations, the solitons spread out, i.e., no collapse occurs.
随机介质中的多维基本孤子和涡旋孤子动力学
我们在非线性薛定谔方程的框架内研究了基本孤子和涡旋孤子的动力学,该方程的空间维度为$D\geqslant2$,并带有取决于时间和空间坐标的乘法随机项。为此,我们开发了一种计算 $N$th 阶偶矩的新技术。所提出的形式主义不使用非线性项的闭合程序,也不使用随机项的小性和扰动理论。其要点在于随机场自相关函数的二次形式和变量的特殊随机变化。利用变分分析确定确定性情况下的结构场,我们分析计算了描述随机介质中基本粒子和涡旋孤子动力学的一些统计特征,如平均强度、强度方差、结构的中心点和扩散、空间相互一致性函数等。我们特别指出,在波动的不可逆作用下,孤子会扩散,即不会发生坍缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信