Identification of novel marker-trait associations and candidate genes for combined low phosphorus and nitrogen-deficient conditions in rice at seedling stage
{"title":"Identification of novel marker-trait associations and candidate genes for combined low phosphorus and nitrogen-deficient conditions in rice at seedling stage","authors":"Parameswaran Chidambaranathan, Shivraj Sahu, Sabarinathan Selvaraj, Reshmi Raj, Cayalvizhi Balasubramaniasai, Sanghamitra Samantaray, Baishnab Charan Muduli, Anandan Annamalai, Jitendriya Meher, Dibyendu Chatterjee, Sangita Mohanty, Padmini Swain, Lambodar Behera","doi":"10.1007/s12042-024-09365-1","DOIUrl":null,"url":null,"abstract":"<p>Rice responds to individual N and P deficiencies through root traits’ modifications and characteristic starvation responses. The genomic regions associated with combined deficiencies of N and P are less reported, though the combinatorial regulation of N and P deficiencies is vital for seedling development. In this study, genome-wide association analysis (GWAS) using ~ 22 k SNPs was performed in one hundred and thirty rice genotypes for nine different traits at the seedling stage (21 days after sowing), and twenty-four statistically significant marker trait associations contributing to the phenotypic variation of 10–79% were identified. Further, except for 10% increase in root length, traits like shoot length, number of leaves, shoot area, shoot dry weight, and root dry weight decreased by 45%, 15%, 60%, 24%, and 45%, respectively, under N and P-deficient soils. Besides, candidate genes for root architecture remodeling (<i>Dro1</i> and <i>Sor1</i>), P and N uptake (<i>PTF1, PEPC</i>), and amino acid transport and homeostasis (<i>AAP7</i>, BCAT2) were found within the genomic regions regulating the combined tolerance to low P and low N. Furthermore, three superior genotypes, namely ENT-62 (Root area, shoot area, and shoot dry weight), ENT-303 (shoot dry weight and root dry weight), and ENT-32 (no. of leaves and shoot area), were identified for regulating more than one trait under low P-low N conditions. Therefore, this study characterized the seedling stage trait response in rice genotypes and identified genomic regions regulating seedling traits for combined N and P deficient soils. The identified QTLs of these genes could be utilized in breeding programs for the combined improvement of nitrogen and phosphorus use efficiency under deficit soils.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12042-024-09365-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Rice responds to individual N and P deficiencies through root traits’ modifications and characteristic starvation responses. The genomic regions associated with combined deficiencies of N and P are less reported, though the combinatorial regulation of N and P deficiencies is vital for seedling development. In this study, genome-wide association analysis (GWAS) using ~ 22 k SNPs was performed in one hundred and thirty rice genotypes for nine different traits at the seedling stage (21 days after sowing), and twenty-four statistically significant marker trait associations contributing to the phenotypic variation of 10–79% were identified. Further, except for 10% increase in root length, traits like shoot length, number of leaves, shoot area, shoot dry weight, and root dry weight decreased by 45%, 15%, 60%, 24%, and 45%, respectively, under N and P-deficient soils. Besides, candidate genes for root architecture remodeling (Dro1 and Sor1), P and N uptake (PTF1, PEPC), and amino acid transport and homeostasis (AAP7, BCAT2) were found within the genomic regions regulating the combined tolerance to low P and low N. Furthermore, three superior genotypes, namely ENT-62 (Root area, shoot area, and shoot dry weight), ENT-303 (shoot dry weight and root dry weight), and ENT-32 (no. of leaves and shoot area), were identified for regulating more than one trait under low P-low N conditions. Therefore, this study characterized the seedling stage trait response in rice genotypes and identified genomic regions regulating seedling traits for combined N and P deficient soils. The identified QTLs of these genes could be utilized in breeding programs for the combined improvement of nitrogen and phosphorus use efficiency under deficit soils.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.