{"title":"Analyzing Annealing Effects on Residual Stresses in Injection Molded Microstructures","authors":"Wanlin Wang, Huabin Yang, Yilei Wang, Can Weng","doi":"10.1007/s12541-024-01051-2","DOIUrl":null,"url":null,"abstract":"<p>Annealing, a critical heat treatment process, is known for its effectiveness in reducing residual stresses in parts affected by temperature and pressure fluctuations during injection molding. This study explores the influence of annealing on residual stress distribution inmicrostructured parts made of three materials—polycarbonate (PC), polymethyl methacrylate (PMMA), and polystyrene (PS)—and featuring two depth-to-width ratios of microprismatic structures. This investigation combines molecular dynamics simulation with annealing experiments. Findings demonstrate that annealing significantly reduces residual stresses across all three materials, albeit with varying degrees of effectiveness. This variation in annealing efficacy is linked to the materials’ properties, particularly the presence of a carbonate base in PC, which notably enhances its annealing response. In detail, for PC parts with a 1:1 depth-to-width ratio in micropillar structures, there was a 15.45% reduction in peak residual stress, while parts with a 2:1 ratio experienced a more substantial reduction of 41.56%. The study attributes these differences in annealing outcomes to the depth-to-width ratios of the microstructures, with larger cavity sizes allowing for more effective molecular chain stretching.</p>","PeriodicalId":14359,"journal":{"name":"International Journal of Precision Engineering and Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12541-024-01051-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Annealing, a critical heat treatment process, is known for its effectiveness in reducing residual stresses in parts affected by temperature and pressure fluctuations during injection molding. This study explores the influence of annealing on residual stress distribution inmicrostructured parts made of three materials—polycarbonate (PC), polymethyl methacrylate (PMMA), and polystyrene (PS)—and featuring two depth-to-width ratios of microprismatic structures. This investigation combines molecular dynamics simulation with annealing experiments. Findings demonstrate that annealing significantly reduces residual stresses across all three materials, albeit with varying degrees of effectiveness. This variation in annealing efficacy is linked to the materials’ properties, particularly the presence of a carbonate base in PC, which notably enhances its annealing response. In detail, for PC parts with a 1:1 depth-to-width ratio in micropillar structures, there was a 15.45% reduction in peak residual stress, while parts with a 2:1 ratio experienced a more substantial reduction of 41.56%. The study attributes these differences in annealing outcomes to the depth-to-width ratios of the microstructures, with larger cavity sizes allowing for more effective molecular chain stretching.
期刊介绍:
The International Journal of Precision Engineering and Manufacturing accepts original contributions on all aspects of precision engineering and manufacturing. The journal specific focus areas include, but are not limited to:
- Precision Machining Processes
- Manufacturing Systems
- Robotics and Automation
- Machine Tools
- Design and Materials
- Biomechanical Engineering
- Nano/Micro Technology
- Rapid Prototyping and Manufacturing
- Measurements and Control
Surveys and reviews will also be planned in consultation with the Editorial Board.