Recursive variational Gaussian approximation with the Whittle likelihood for linear non-Gaussian state space models

Bao Anh Vu, David Gunawan, Andrew Zammit-Mangion
{"title":"Recursive variational Gaussian approximation with the Whittle likelihood for linear non-Gaussian state space models","authors":"Bao Anh Vu, David Gunawan, Andrew Zammit-Mangion","doi":"arxiv-2406.15998","DOIUrl":null,"url":null,"abstract":"Parameter inference for linear and non-Gaussian state space models is\nchallenging because the likelihood function contains an intractable integral\nover the latent state variables. Exact inference using Markov chain Monte Carlo\nis computationally expensive, particularly for long time series data.\nVariational Bayes methods are useful when exact inference is infeasible. These\nmethods approximate the posterior density of the parameters by a simple and\ntractable distribution found through optimisation. In this paper, we propose a\nnovel sequential variational Bayes approach that makes use of the Whittle\nlikelihood for computationally efficient parameter inference in this class of\nstate space models. Our algorithm, which we call Recursive Variational Gaussian\nApproximation with the Whittle Likelihood (R-VGA-Whittle), updates the\nvariational parameters by processing data in the frequency domain. At each\niteration, R-VGA-Whittle requires the gradient and Hessian of the Whittle\nlog-likelihood, which are available in closed form for a wide class of models.\nThrough several examples using a linear Gaussian state space model and a\nunivariate/bivariate non-Gaussian stochastic volatility model, we show that\nR-VGA-Whittle provides good approximations to posterior distributions of the\nparameters and is very computationally efficient when compared to\nasymptotically exact methods such as Hamiltonian Monte Carlo.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.15998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Parameter inference for linear and non-Gaussian state space models is challenging because the likelihood function contains an intractable integral over the latent state variables. Exact inference using Markov chain Monte Carlo is computationally expensive, particularly for long time series data. Variational Bayes methods are useful when exact inference is infeasible. These methods approximate the posterior density of the parameters by a simple and tractable distribution found through optimisation. In this paper, we propose a novel sequential variational Bayes approach that makes use of the Whittle likelihood for computationally efficient parameter inference in this class of state space models. Our algorithm, which we call Recursive Variational Gaussian Approximation with the Whittle Likelihood (R-VGA-Whittle), updates the variational parameters by processing data in the frequency domain. At each iteration, R-VGA-Whittle requires the gradient and Hessian of the Whittle log-likelihood, which are available in closed form for a wide class of models. Through several examples using a linear Gaussian state space model and a univariate/bivariate non-Gaussian stochastic volatility model, we show that R-VGA-Whittle provides good approximations to posterior distributions of the parameters and is very computationally efficient when compared to asymptotically exact methods such as Hamiltonian Monte Carlo.
利用惠特尔似然对线性非高斯状态空间模型进行递归变分高斯逼近
线性和非高斯状态空间模型的参数推断是一项挑战,因为似然函数包含一个难以处理的潜在状态变量积分。使用马尔科夫链蒙特卡罗进行精确推断的计算成本很高,尤其是对于长时间序列数据。当精确推断不可行时,变分贝叶斯方法就会派上用场。这些方法通过优化找到一个简单、可操作的分布,从而近似得到参数的后验密度。在本文中,我们提出了一种新的序列变分贝叶斯方法,该方法利用惠特尔似然(Whittlelikelihood)对这类状态空间模型中的参数进行高效计算推断。我们将这种算法称为 "惠特尔似然递归变异高斯逼近算法"(R-VGA-Whittle),它通过处理频域数据来更新变异参数。通过使用线性高斯状态空间模型和单变量/双变量非高斯随机波动性模型的几个例子,我们表明 R-VGA-Whittle 可以很好地近似参数的后验分布,与汉密尔顿蒙特卡洛等渐近精确方法相比,计算效率非常高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信