A General Purpose Approximation to the Ferguson-Klass Algorithm for Sampling from Lévy Processes Without Gaussian Components

Dawid Bernaciak, Jim E. Griffin
{"title":"A General Purpose Approximation to the Ferguson-Klass Algorithm for Sampling from Lévy Processes Without Gaussian Components","authors":"Dawid Bernaciak, Jim E. Griffin","doi":"arxiv-2407.01483","DOIUrl":null,"url":null,"abstract":"We propose a general-purpose approximation to the Ferguson-Klass algorithm\nfor generating samples from L\\'evy processes without Gaussian components. We\nshow that the proposed method is more than 1000 times faster than the standard\nFerguson-Klass algorithm without a significant loss of precision. This method\ncan open an avenue for computationally efficient and scalable Bayesian\nnonparametric models which go beyond conjugacy assumptions, as demonstrated in\nthe examples section.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"189 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.01483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a general-purpose approximation to the Ferguson-Klass algorithm for generating samples from L\'evy processes without Gaussian components. We show that the proposed method is more than 1000 times faster than the standard Ferguson-Klass algorithm without a significant loss of precision. This method can open an avenue for computationally efficient and scalable Bayesian nonparametric models which go beyond conjugacy assumptions, as demonstrated in the examples section.
从无高斯成分的莱维过程采样的弗格森-克拉斯算法的通用近似值
我们提出了一种通用的近似弗格森-克拉斯算法,用于从没有高斯成分的 L\'evy 过程中生成样本。结果表明,所提出的方法比标准的弗格森-克拉斯算法快 1000 多倍,而且精度没有明显下降。正如示例部分所展示的,这种方法可以为计算高效、可扩展的贝叶斯非参数模型开辟一条途径,这些模型超越了共轭假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信