SplineGen: a generative model for B-spline approximation of unorganized points

Qiang Zou, Lizhen Zhu
{"title":"SplineGen: a generative model for B-spline approximation of unorganized points","authors":"Qiang Zou, Lizhen Zhu","doi":"arxiv-2406.09692","DOIUrl":null,"url":null,"abstract":"This paper presents a learning-based method to solve the traditional\nparameterization and knot placement problems in B-spline approximation.\nDifferent from conventional heuristic methods or recent AI-based methods, the\nproposed method does not assume ordered or fixed-size data points as input.\nThere is also no need for manually setting the number of knots. It casts the\nparameterization and knot placement problems as a sequence-to-sequence\ntranslation problem, a generative process automatically determining the number\nof knots, their placement, parameter values, and their ordering. Once trained,\nSplineGen demonstrates a notable improvement over existing methods, with a one\nto two orders of magnitude increase in approximation accuracy on test data.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.09692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a learning-based method to solve the traditional parameterization and knot placement problems in B-spline approximation. Different from conventional heuristic methods or recent AI-based methods, the proposed method does not assume ordered or fixed-size data points as input. There is also no need for manually setting the number of knots. It casts the parameterization and knot placement problems as a sequence-to-sequence translation problem, a generative process automatically determining the number of knots, their placement, parameter values, and their ordering. Once trained, SplineGen demonstrates a notable improvement over existing methods, with a one to two orders of magnitude increase in approximation accuracy on test data.
SplineGen:用于无组织点 B 样条逼近的生成模型
本文提出了一种基于学习的方法来解决 B-样条曲线逼近中的传统参数化和节点放置问题。与传统的启发式方法或最新的基于人工智能的方法不同,本文提出的方法不假定有序或固定大小的数据点作为输入,也不需要手动设置节点数量。它将参数化和节点放置问题视为序列到序列的转换问题,是一个自动确定节点数量、节点放置、参数值和节点排序的生成过程。经过训练后,SplineGen 与现有方法相比有了显著改进,测试数据的近似精度提高了一到两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信