$$\imath $$ Hall algebras of weighted projective lines and quantum symmetric pairs II: injectivity

IF 1 3区 数学 Q1 MATHEMATICS
Ming Lu, Shiquan Ruan
{"title":"$$\\imath $$ Hall algebras of weighted projective lines and quantum symmetric pairs II: injectivity","authors":"Ming Lu, Shiquan Ruan","doi":"10.1007/s00209-024-03528-2","DOIUrl":null,"url":null,"abstract":"<p>We show that the morphism <span>\\(\\Omega \\)</span> from the <span>\\(\\imath \\)</span>quantum loop algebra <span>\\({}^{\\text {Dr}}\\widetilde{{{\\textbf{U}}}}^\\imath (L{\\mathfrak {g}})\\)</span> of split type to the <span>\\(\\imath \\)</span>Hall algebra of the weighted projective line is injective if <span>\\({\\mathfrak {g}}\\)</span> is of finite or affine type. As a byproduct, we use the whole <span>\\(\\imath \\)</span>Hall algebra of the cyclic quiver <span>\\(C_n\\)</span> to realize the <span>\\(\\imath \\)</span>quantum loop algebra of affine <span>\\(\\mathfrak {gl}_n\\)</span>.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"69 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03528-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the morphism \(\Omega \) from the \(\imath \)quantum loop algebra \({}^{\text {Dr}}\widetilde{{{\textbf{U}}}}^\imath (L{\mathfrak {g}})\) of split type to the \(\imath \)Hall algebra of the weighted projective line is injective if \({\mathfrak {g}}\) is of finite or affine type. As a byproduct, we use the whole \(\imath \)Hall algebra of the cyclic quiver \(C_n\) to realize the \(\imath \)quantum loop algebra of affine \(\mathfrak {gl}_n\).

Abstract Image

$$\imath $$ 加权投影线的霍尔代数和量子对称对 II:注入性
我们证明,如果 \({\mathfrak {g}}) 是注入的,那么从量子环代数 \({}^{text {Dr}}\widetilde{{{textbf{U}}}}^^\imath (L{mathfrak {g}}) 的分裂类型到 \(\mathfrak {g}})霍尔代数的态射就是注入的。{如果 \({\mathfrak {g}})是有限类型或仿射类型,那么加权投影线的霍尔代数的分裂类型就是注入类型。作为副产品,我们使用循环四元组的整个霍尔代数来实现仿射的量子环代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信