Pablo MalvidoFresnillo, Wael M. Mohammed, Saigopal Vasudevan, Jose A. PerezGarcia, Jose L. MartinezLastra
{"title":"Generation of realistic synthetic cable images to train deep learning segmentation models","authors":"Pablo MalvidoFresnillo, Wael M. Mohammed, Saigopal Vasudevan, Jose A. PerezGarcia, Jose L. MartinezLastra","doi":"10.1007/s00138-024-01562-y","DOIUrl":null,"url":null,"abstract":"<p>Semantic segmentation is one of the most important and studied problems in machine vision, which has been solved with high accuracy by many deep learning models. However, all these models present a significant drawback, they require large and diverse datasets to be trained. Gathering and annotating all these images manually would be extremely time-consuming, hence, numerous researchers have proposed approaches to facilitate or automate the process. Nevertheless, when the objects to be segmented are deformable, such as cables, the automation of this process becomes more challenging, as the dataset needs to represent their high diversity of shapes while keeping a high level of realism, and none of the existing solutions have been able to address it effectively. Therefore, this paper proposes a novel methodology to automatically generate highly realistic synthetic datasets of cables for training deep learning models in image segmentation tasks. This methodology utilizes Blender to create photo-realistic cable scenes and a Python pipeline to introduce random variations and natural deformations. To prove its performance, a dataset composed of 25000 synthetic cable images and their corresponding masks was generated and used to train six popular deep learning segmentation models. These models were then utilized to segment real cable images achieving outstanding results (over 70% IoU and 80% Dice coefficient for all the models). Both the methodology and the generated dataset are publicly available in the project’s repository.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"43 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01562-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Semantic segmentation is one of the most important and studied problems in machine vision, which has been solved with high accuracy by many deep learning models. However, all these models present a significant drawback, they require large and diverse datasets to be trained. Gathering and annotating all these images manually would be extremely time-consuming, hence, numerous researchers have proposed approaches to facilitate or automate the process. Nevertheless, when the objects to be segmented are deformable, such as cables, the automation of this process becomes more challenging, as the dataset needs to represent their high diversity of shapes while keeping a high level of realism, and none of the existing solutions have been able to address it effectively. Therefore, this paper proposes a novel methodology to automatically generate highly realistic synthetic datasets of cables for training deep learning models in image segmentation tasks. This methodology utilizes Blender to create photo-realistic cable scenes and a Python pipeline to introduce random variations and natural deformations. To prove its performance, a dataset composed of 25000 synthetic cable images and their corresponding masks was generated and used to train six popular deep learning segmentation models. These models were then utilized to segment real cable images achieving outstanding results (over 70% IoU and 80% Dice coefficient for all the models). Both the methodology and the generated dataset are publicly available in the project’s repository.
期刊介绍:
Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal.
Particular emphasis is placed on engineering and technology aspects of image processing and computer vision.
The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.