Internalizations of Decorated Bicategories via \(\pi _2\)-Indexings

IF 0.6 4区 数学 Q3 MATHEMATICS
Juan Orendain, José Rubén Maldonado-Herrera
{"title":"Internalizations of Decorated Bicategories via \\(\\pi _2\\)-Indexings","authors":"Juan Orendain,&nbsp;José Rubén Maldonado-Herrera","doi":"10.1007/s10485-024-09774-z","DOIUrl":null,"url":null,"abstract":"<div><p>We treat the problem of lifting bicategories into double categories through categories of vertical morphisms. We consider structures on decorated 2-categories allowing us to formally implement arguments of sliding certain squares along vertical subdivisions in double categories. We call these structures <span>\\(\\pi _2\\)</span>-indexings. We present a construction associating, to every <span>\\(\\pi _2\\)</span>-indexing on a decorated 2-category, a length 1 double internalization.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-024-09774-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-024-09774-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We treat the problem of lifting bicategories into double categories through categories of vertical morphisms. We consider structures on decorated 2-categories allowing us to formally implement arguments of sliding certain squares along vertical subdivisions in double categories. We call these structures \(\pi _2\)-indexings. We present a construction associating, to every \(\pi _2\)-indexing on a decorated 2-category, a length 1 double internalization.

Abstract Image

通过$$\pi _2$$ -索引实现装饰二元范畴的内部化
我们通过垂直变形范畴来处理将二元范畴提升为双范畴的问题。我们考虑了装饰二元范畴上的结构,这些结构允许我们在双范畴中正式实现沿着垂直细分滑动某些方格的论证。我们称这些结构为 \(\pi _2\)-索引。我们提出了一种构造,它将一个长度为1的双重内部化关联到每一个装饰2范畴上的(\pi _2\)索引。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信