{"title":"Heuristic approaches for non-exhaustive pattern-based change detection in dynamic networks","authors":"Corrado Loglisci, Angelo Impedovo, Toon Calders, Michelangelo Ceci","doi":"10.1007/s10844-024-00866-9","DOIUrl":null,"url":null,"abstract":"<p>Dynamic networks are ubiquitous in many domains for modelling evolving graph-structured data and detecting changes allows us to understand the dynamic of the domain represented. A category of computational solutions is represented by the pattern-based change detectors (PBCDs), which are non-parametric unsupervised change detection methods based on observed changes in sets of frequent patterns over time. Patterns have the ability to depict the structural information of the sub-graphs, becoming a useful tool in the interpretation of the changes. Existing PBCDs often rely on exhaustive mining, which corresponds to the worst-case exponential time complexity, making this category of algorithms inefficient in practice. In fact, in such a case, the pattern mining process is even more time-consuming and inefficient due to the combinatorial explosion of the sub-graph pattern space caused by the inherent complexity of the graph structure. Non-exhaustive search strategies can represent a possible approach to this problem, also because not all the possible frequent patterns contribute to changes in the time-evolving data. In this paper, we investigate the viability of different heuristic approaches which prevent the complete exploration of the search space, by returning a concise set of sub-graph patterns (compared to the exhaustive case). The heuristics differ on the criterion used to select representative patterns. The results obtained on real-world and synthetic dynamic networks show that these solutions are effective, when mining patterns, and even more accurate when detecting changes.</p>","PeriodicalId":56119,"journal":{"name":"Journal of Intelligent Information Systems","volume":"18 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10844-024-00866-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic networks are ubiquitous in many domains for modelling evolving graph-structured data and detecting changes allows us to understand the dynamic of the domain represented. A category of computational solutions is represented by the pattern-based change detectors (PBCDs), which are non-parametric unsupervised change detection methods based on observed changes in sets of frequent patterns over time. Patterns have the ability to depict the structural information of the sub-graphs, becoming a useful tool in the interpretation of the changes. Existing PBCDs often rely on exhaustive mining, which corresponds to the worst-case exponential time complexity, making this category of algorithms inefficient in practice. In fact, in such a case, the pattern mining process is even more time-consuming and inefficient due to the combinatorial explosion of the sub-graph pattern space caused by the inherent complexity of the graph structure. Non-exhaustive search strategies can represent a possible approach to this problem, also because not all the possible frequent patterns contribute to changes in the time-evolving data. In this paper, we investigate the viability of different heuristic approaches which prevent the complete exploration of the search space, by returning a concise set of sub-graph patterns (compared to the exhaustive case). The heuristics differ on the criterion used to select representative patterns. The results obtained on real-world and synthetic dynamic networks show that these solutions are effective, when mining patterns, and even more accurate when detecting changes.
期刊介绍:
The mission of the Journal of Intelligent Information Systems: Integrating Artifical Intelligence and Database Technologies is to foster and present research and development results focused on the integration of artificial intelligence and database technologies to create next generation information systems - Intelligent Information Systems.
These new information systems embody knowledge that allows them to exhibit intelligent behavior, cooperate with users and other systems in problem solving, discovery, access, retrieval and manipulation of a wide variety of multimedia data and knowledge, and reason under uncertainty. Increasingly, knowledge-directed inference processes are being used to:
discover knowledge from large data collections,
provide cooperative support to users in complex query formulation and refinement,
access, retrieve, store and manage large collections of multimedia data and knowledge,
integrate information from multiple heterogeneous data and knowledge sources, and
reason about information under uncertain conditions.
Multimedia and hypermedia information systems now operate on a global scale over the Internet, and new tools and techniques are needed to manage these dynamic and evolving information spaces.
The Journal of Intelligent Information Systems provides a forum wherein academics, researchers and practitioners may publish high-quality, original and state-of-the-art papers describing theoretical aspects, systems architectures, analysis and design tools and techniques, and implementation experiences in intelligent information systems. The categories of papers published by JIIS include: research papers, invited papters, meetings, workshop and conference annoucements and reports, survey and tutorial articles, and book reviews. Short articles describing open problems or their solutions are also welcome.