High-stability double-layer polymer–inorganic composite electrolyte fabricated through ultraviolet curing process for solid-state lithium metal batteries

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xinghua Liang, Pengcheng Shen, Lingxiao Lan, Yunmei Qin, Ge Yan, Meihong Huang, Xuanan Lu, Qiankun Hun, Yujiang Wang, Jixuan Wang
{"title":"High-stability double-layer polymer–inorganic composite electrolyte fabricated through ultraviolet curing process for solid-state lithium metal batteries","authors":"Xinghua Liang,&nbsp;Pengcheng Shen,&nbsp;Lingxiao Lan,&nbsp;Yunmei Qin,&nbsp;Ge Yan,&nbsp;Meihong Huang,&nbsp;Xuanan Lu,&nbsp;Qiankun Hun,&nbsp;Yujiang Wang,&nbsp;Jixuan Wang","doi":"10.1007/s11706-024-0685-9","DOIUrl":null,"url":null,"abstract":"<div><p>Electrolyte interface resistance and low ionic conductivity are essential issues for commercializing solid-state lithium metal batteries (SSLMBs). This work details the fabrication of a double-layer solid composite electrolyte (DLSCE) for SSLMBs. The composite comprises poly(vinylidene fluoride-<i>co</i>-hexafluoropropylene) (PVDF–HFP) and poly(methyl methacrylate) (PMMA) combined with 10 wt.% of Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> (LLZTO), synthesized through an ultraviolet curing process. The ionic conductivity of the DLSCE (2.6 × 10<sup>−4</sup> S·cm<sup>−1</sup>) at room temperature is the high lithium-ion transference number (0.57), and the tensile strength is 17.8 MPa. When this DLSCE was assembled, the resulted LFP/DLSCE/Li battery exhibited excellent rate performance, with the discharge specific capacities of 162.4, 146.9, 93.6, and 64.0 mA·h·g<sup>−1</sup> at 0.1, 0.2, 0.5, and 1 C, respectively. Furthermore, the DLSCE demonstrates remarkable stability with lithium metal batteries, facilitating the stable operation of a Li/Li symmetric battery for over 200 h at both 0.1 and 0.2 mA·cm<sup>−2</sup>. Notably, the formation of lithium dendrites is also effectively inhibited during cycling. This work provides a novel design strategy and preparation method for solid composite electrolytes.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0685-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrolyte interface resistance and low ionic conductivity are essential issues for commercializing solid-state lithium metal batteries (SSLMBs). This work details the fabrication of a double-layer solid composite electrolyte (DLSCE) for SSLMBs. The composite comprises poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF–HFP) and poly(methyl methacrylate) (PMMA) combined with 10 wt.% of Li6.4La3Zr1.4Ta0.6O12 (LLZTO), synthesized through an ultraviolet curing process. The ionic conductivity of the DLSCE (2.6 × 10−4 S·cm−1) at room temperature is the high lithium-ion transference number (0.57), and the tensile strength is 17.8 MPa. When this DLSCE was assembled, the resulted LFP/DLSCE/Li battery exhibited excellent rate performance, with the discharge specific capacities of 162.4, 146.9, 93.6, and 64.0 mA·h·g−1 at 0.1, 0.2, 0.5, and 1 C, respectively. Furthermore, the DLSCE demonstrates remarkable stability with lithium metal batteries, facilitating the stable operation of a Li/Li symmetric battery for over 200 h at both 0.1 and 0.2 mA·cm−2. Notably, the formation of lithium dendrites is also effectively inhibited during cycling. This work provides a novel design strategy and preparation method for solid composite electrolytes.

通过紫外线固化工艺制作用于固态锂金属电池的高稳定性双层聚合物-无机复合电解质
电解质界面电阻和低离子电导率是固态锂金属电池(SSLMB)商业化的关键问题。本研究详细介绍了用于固态锂金属电池的双层固体复合电解质(DLSCE)的制造过程。该复合电解质由聚偏氟乙烯-六氟丙烯(PVDF-HFP)和聚甲基丙烯酸甲酯(PMMA)以及 10 wt.% 的 Li6.4La3Zr1.4Ta0.6O12 (LLZTO)组成,通过紫外固化工艺合成。该 DLSCE 在室温下的离子电导率(2.6 × 10-4 S-cm-1)为高锂离子转移数(0.57),抗拉强度为 17.8 兆帕。当组装这种 DLSCE 时,得到的 LFP/DLSCE/Li 电池表现出优异的速率性能,在 0.1、0.2、0.5 和 1 C 下的放电比容量分别为 162.4、146.9、93.6 和 64.0 mA-h-g-1。此外,DLSCE 对锂金属电池具有显著的稳定性,在 0.1 和 0.2 mA-cm-2 条件下,锂/锂对称电池可稳定运行 200 小时以上。值得注意的是,在循环过程中,锂枝晶的形成也受到了有效抑制。这项研究为固体复合电解质提供了一种新的设计策略和制备方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers of Materials Science
Frontiers of Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
3.70%
发文量
515
期刊介绍: Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community. The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to): Biomaterials including biomimetics and biomineralization; Nano materials; Polymers and composites; New metallic materials; Advanced ceramics; Materials modeling and computation; Frontier materials synthesis and characterization; Novel methods for materials manufacturing; Materials performance; Materials applications in energy, information and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信